IDEAS home Printed from https://ideas.repec.org/a/aes/infoec/v14y2010i4p48-56.html
   My bibliography  Save this article

Software Reliability in Semantic Web Service Composition Applications

Author

Listed:
  • Liviu Adrian COTFAS
  • Andreea DIOSTEANU

Abstract

Web Service Composition allows the development of easily reconfigurable applications that can be quickly adapted to business changes. Due to the shift in paradigm from traditional systems, new approaches are needed in order to evaluate the reliability of web service composition applications. In this paper we present an approach based on intelligent agents for semiautomatic composition as well as methods for assessing reliability. Abstract web services, corresponding to a group of services that accomplishes a specific functionality are used as a mean of assuring better system reliability. The model can be extended with other Quality of Services – QoS attributes.

Suggested Citation

  • Liviu Adrian COTFAS & Andreea DIOSTEANU, 2010. "Software Reliability in Semantic Web Service Composition Applications," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(4), pages 48-56.
  • Handle: RePEc:aes:infoec:v:14:y:2010:i:4:p:48-56
    as

    Download full text from publisher

    File URL: http://revistaie.ase.ro/content/56/04%20-%20Cotfas,%20Diosteanu.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Kanesaraj Ramasamy & Fang-Fang Chua & Su-Cheng Haw & Chin-Kuan Ho, 2022. "WSFeIn: A Novel, Dynamic Web Service Composition Adapter for Cloud-Based Mobile Application," Sustainability, MDPI, vol. 14(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuka Minamino & Yusuke Makita & Shinji Inoue & Shigeru Yamada, 2022. "Efficiency Evaluation of Software Faults Correction Based on Queuing Simulation," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
    2. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    3. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    4. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    5. Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
    6. Hoang Pham, 2020. "On Estimating the Number of Deaths Related to Covid-19," Mathematics, MDPI, vol. 8(5), pages 1-9, April.
    7. Harishchandra Kodialbail & Manjunatha Kammasandra M., 2010. "Statistical Inference on Software Reliability Assuming Exponential Fault Correction Time," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 269-279, January.
    8. Hoang Pham, 2020. "Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    9. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    10. Gaurav Mishra & P. K. Kapur & Anu G. Aggarwal, 2023. "A generalized multi-upgradation SRGM considering uncertainty of random field operating environments," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 328-336, March.
    11. Kwang Yoon Song & Youn Su Kim & Hoang Pham & In Hong Chang, 2024. "A Software Reliability Model Considering a Scale Parameter of the Uncertainty and a New Criterion," Mathematics, MDPI, vol. 12(11), pages 1-14, May.
    12. Kelly, Dana L. & Smith, Curtis L., 2009. "Bayesian inference in probabilistic risk assessment—The current state of the art," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 628-643.
    13. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    14. Bistouni, Fathollah & Jahanshahi, Mohsen, 2017. "Remove and contraction: A novel method for calculating the reliability of Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 362-375.
    15. R Medjoudj & D Aissani & A Boubakeur & K D Haim, 2009. "Interruption modelling in electrical power distribution systems using the Weibull—Markov model," Journal of Risk and Reliability, , vol. 223(2), pages 145-157, June.
    16. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    17. Yaghoobi, Tahere, 2020. "Parameter optimization of software reliability models using improved differential evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 46-62.
    18. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    19. S. Chatterjee & S. Nigam & J. B. Singh & L. N. Upadhyaya, 2011. "Application of fuzzy time series in prediction of time between failures & faults in software reliability assessment," Fuzzy Information and Engineering, Springer, vol. 3(3), pages 293-309, September.
    20. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:infoec:v:14:y:2010:i:4:p:48-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Pocatilu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.