An application of locally linear model tree algorithm with combination of feature selection in credit scoring
Author
Abstract
Suggested Citation
DOI: 10.1080/00207721.2013.767395
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- A. C. Antonakis & M. E. Sfakianakis, 2009. "Assessing naive Bayes as a method for screening credit applicants," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(5), pages 537-545.
- Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
- Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
- Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
- Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Natalia Nehrebecka, 2016. "Approach to the assessment of credit risk for non-financial corporations. Evidence from Poland," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Combining micro and macro data for financial stability analysis, volume 41, Bank for International Settlements.
- Nyitrai, Tamás & Virág, Miklós, 2019. "The effects of handling outliers on the performance of bankruptcy prediction models," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 34-42.
- Runchi Zhang & Zhiyi Qiu, 2020. "Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
- Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
- Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
- Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
- Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
- Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
- Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
- LaDue, Eddy L. & Miller, Lynn H. & Kwiatkowski, Joseph H., 1990. "Investment Behavior And Energy Conservation," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 19(2), pages 1-10, October.
- Kattan, MW & Cooper, RB, 1998. "The predictive accuracy of computer-based classification decision techniques.A review and research directions," Omega, Elsevier, vol. 26(4), pages 467-482, August.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Pablo de Llano Monelos & Manuel RodrÃguez López & Carlos Piñeiro Sánchez, 2013. "Bankruptcy Prediction Models in Galician companies. Application of Parametric Methodologies and Artificial Intelligence," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 117-136.
- Barboza, Flavio & Altman, Edward, 2024. "Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
- Catherine Refait, 2004.
"La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux,"
Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
- Catherine Refait-Alexandre, 2004. "La prévision de la faillite fondée sur l'analyse financière de l'entreprise : un état des lieux," Economie & Prévision, La Documentation Française, vol. 162(1), pages 129-147.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:45:y:2014:i:10:p:2213-2222. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.