IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v177y2007i1p540-555.html
   My bibliography  Save this article

Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms

Author

Listed:
  • Hoffmann, F.
  • Baesens, B.
  • Mues, C.
  • Van Gestel, T.
  • Vanthienen, J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
  • Handle: RePEc:eee:ejores:v:177:y:2007:i:1:p:540-555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00942-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    2. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    2. Runchi Zhang & Zhiyi Qiu, 2020. "Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
    3. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    4. Sirbiladze, Gia & Khutsishvili, Irina & Ghvaberidze, Bezhan, 2014. "Multistage decision-making fuzzy methodology for optimal investments based on experts’ evaluations," European Journal of Operational Research, Elsevier, vol. 232(1), pages 169-177.
    5. Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
    6. Ha Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," Working Papers hal-04133309, HAL.
    7. Mohammad Siami & Mohammad Reza Gholamian & Javad Basiri, 2014. "An application of locally linear model tree algorithm with combination of feature selection in credit scoring," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2213-2222, October.
    8. Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
    9. Hazar ALTINBAŞ, 2020. "Modern Kredi Sınıflandırma Çalışmaları ve Metasezgisel Algoritma Uygulamaları: Sistematik Bir Derleme," Istanbul Business Research, Istanbul University Business School, vol. 49(1), pages 146-175, May.
    10. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    11. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    2. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    3. Berkin, Anil & Aerts, Walter & Van Caneghem, Tom, 2023. "Feasibility analysis of machine learning for performance-related attributional statements," International Journal of Accounting Information Systems, Elsevier, vol. 48(C).
    4. E Lima & C Mues & B Baesens, 2009. "Domain knowledge integration in data mining using decision tables: case studies in churn prediction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1096-1106, August.
    5. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 2021. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 17(1), pages 29-43, March.
    6. Dejaeger, Karel & Goethals, Frank & Giangreco, Antonio & Mola, Lapo & Baesens, Bart, 2012. "Gaining insight into student satisfaction using comprehensible data mining techniques," European Journal of Operational Research, Elsevier, vol. 218(2), pages 548-562.
    7. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
    8. B Baesens & T Van Gestel & M Stepanova & D Van den Poel & J Vanthienen, 2005. "Neural network survival analysis for personal loan data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1089-1098, September.
    9. B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
    10. Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
    11. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    12. R Setiono & S-L Pan & M-H Hsieh & A Azcarraga, 2006. "Knowledge acquisition and revision using neural networks: an application to a cross-national study of brand image perception," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 231-240, March.
    13. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 0. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-15.
    14. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    15. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
    16. Hazar Altinbas & Goktug Cenk Akkaya, 2017. "Improving the performance of statistical learning methods with a combined meta-heuristic for consumer credit risk assessment," Risk Management, Palgrave Macmillan, vol. 19(4), pages 255-280, November.
    17. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    18. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    19. Lean Yu & Xinxie Li & Ling Tang & Zongyi Zhang & Gang Kou, 2015. "Social credit: a comprehensive literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-18, December.
    20. Denisa BANULESCU-RADU & Meryem YANKOL-SCHALCK, 2021. "Fraud detection in the era of Machine Learning: a household insurance case," LEO Working Papers / DR LEO 2904, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:177:y:2007:i:1:p:540-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.