IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v38y2018i2p184-208.html
   My bibliography  Save this article

Factors contributing to bicycle–motorised vehicle collisions: a systematic literature review

Author

Listed:
  • Gabriele Prati
  • Víctor Marín Puchades
  • Marco De Angelis
  • Federico Fraboni
  • Luca Pietrantoni

Abstract

Bicycle–motorised vehicle (BMV) collisions account for the majority of the recorded bicyclists’ fatalities and serious injuries. This systematic review intends to examine the main factors contributing to BMV collisions. We performed a comprehensive literature review on Scopus, TRID, ProQuest, and Web of Science databases. Fifty-nine English-language peer-reviewed articles met the eligibility criteria and were included in the final analysis. The main factors contributing to BMV collisions identified were classified in accordance with a recently published conceptual framework for road safety. The majority of studies have identified factors related to road users’ behaviour (59.3%) and infrastructure characteristics (57.6%). A minority of studies identified variables related to exposure (40.7%) and vehicles (15.3%) as contributor factors to BMV collisions. A small but significant proportion of studies (20.3%) provided evidence that environmental factors may also play a role, although to a lesser extent, in determining BMV collisions. In addition to the three factors comprised in the applied conceptual framework for road safety, we identified environmental conditions as a category of factors contributing to BMV collisions.

Suggested Citation

  • Gabriele Prati & Víctor Marín Puchades & Marco De Angelis & Federico Fraboni & Luca Pietrantoni, 2018. "Factors contributing to bicycle–motorised vehicle collisions: a systematic literature review," Transport Reviews, Taylor & Francis Journals, vol. 38(2), pages 184-208, March.
  • Handle: RePEc:taf:transr:v:38:y:2018:i:2:p:184-208
    DOI: 10.1080/01441647.2017.1314391
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2017.1314391
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2017.1314391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vandenbulcke, Grégory & Thomas, Isabelle & de Geus, Bas & Degraeuwe, Bart & Torfs, Rudi & Meeusen, Romain & Int Panis, Luc, 2009. "Mapping bicycle use and the risk of accidents for commuters who cycle to work in Belgium," Transport Policy, Elsevier, vol. 16(2), pages 77-87, March.
    2. Susan Handy & Bert van Wee & Maarten Kroesen, 2014. "Promoting Cycling for Transport: Research Needs and Challenges," Transport Reviews, Taylor & Francis Journals, vol. 34(1), pages 4-24, January.
    3. Lusk, A.C. & Morency, P. & Miranda-Moreno, L.F. & Willett, W.C. & Dennerlein, J.T., 2013. "Bicycle guidelines and crash rates on cycle tracks in the United States," American Journal of Public Health, American Public Health Association, vol. 103(7), pages 1240-1248.
    4. Chen, L. & Chen, C. & Srinivasan, R. & McKnight, C.E. & Ewing, R. & Roe, M., 2012. "Evaluating the safety effects of bicycle lanes in New York City," American Journal of Public Health, American Public Health Association, vol. 102(6), pages 1120-1127.
    5. Thompson, Jason & Savino, Giovanni & Stevenson, Mark, 2016. "A model of behavioural adaptation as a contributor to the safety-in-numbers effect for cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 65-75.
    6. Gatersleben, Birgitta & Appleton, Katherine M., 2007. "Contemplating cycling to work: Attitudes and perceptions in different stages of change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 302-312, May.
    7. Daley, Michelle & Rissel, Chris, 2011. "Perspectives and images of cycling as a barrier or facilitator of cycling," Transport Policy, Elsevier, vol. 18(1), pages 211-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filip Filipović & Dušan Mladenović & Krsto Lipovac & Dillip Kumar Das & Bojana Todosijević, 2022. "Determining Risk Factors That Influence Cycling Crash Severity, for the Purpose of Setting Sustainable Cycling Mobility," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    2. Sebastian Seriani & Vicente Perez & Vicente Aprigliano & Taku Fujiyama, 2022. "Experimental Study of Cyclist’ Sensitivity When They Are Overtaken by a Motor Vehicle: A Pilot Study in a Street without Cycle Lanes," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    3. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    4. Ravensbergen, Léa & Buliung, Ron & Laliberté, Nicole, 2020. "Fear of cycling: Social, spatial, and temporal dimensions," Journal of Transport Geography, Elsevier, vol. 87(C).
    5. Jurgis Zagorskas & Marija Burinskienė, 2019. "Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
    6. Qingzhou Wang & Jiarong Sun & Nannan Wang & Yu Wang & Yang Song & Xia Li, 2022. "Exploring the Influencing Factors and Formation of the Blind Zone of a Semitrailer Truck in a Right-Turn Collision," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    7. Shin, Eun Jin, 2023. "Decomposing neighborhood disparities in bicycle crashes: A Gelbach decomposition analysis," Transport Policy, Elsevier, vol. 131(C), pages 156-172.
    8. Li, Xiaomeng & Pooyan Afghari, Amir & Oviedo-Trespalacios, Oscar & Kaye, Sherrie-Anne & Haworth, Narelle, 2023. "Cyclists perception and self-reported behaviour towards interacting with fully automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    9. Guadalupe González-Sánchez & María Isabel Olmo-Sánchez & Elvira Maeso-González & Mario Gutiérrez-Bedmar & Antonio García-Rodríguez, 2021. "Needs for International Benchmarking of Road Safety Management Based on Mobility Exposure Measures and Risk Patterns," IJERPH, MDPI, vol. 18(23), pages 1-13, December.
    10. von Stülpnagel, Rul & Rintelen, Heiko, 2024. "A matter of space and perspective – Cyclists’, car drivers’, and pedestrians’ assumptions about subjective safety in shared traffic situations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Minh Hieu & Pojani, Dorina, 2024. "The effect of fuel price fluctuations on utilitarian cycling rates: A survey of cyclists in Vietnam," Journal of Transport Geography, Elsevier, vol. 115(C).
    2. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    3. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    4. Verma, Meghna & Rahul, T.M. & Reddy, Peesari Vamshidhar & Verma, Ashish, 2016. "The factors influencing bicycling in the Bangalore city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 29-40.
    5. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    6. Kevin Manaugh & Geneviève Boisjoly & Ahmed El-Geneidy, 2017. "Overcoming barriers to cycling: understanding frequency of cycling in a University setting and the factors preventing commuters from cycling on a regular basis," Transportation, Springer, vol. 44(4), pages 871-884, July.
    7. Mrkajic, Vladimir & Vukelic, Djordje & Mihajlov, Andjelka, 2015. "Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: the case of the University of Novi Sad, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 232-242.
    8. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    9. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    10. José Castillo-Manzano & Antonio Sánchez-Braza, 2013. "Managing a smart bicycle system when demand outstrips supply: the case of the university community in Seville," Transportation, Springer, vol. 40(2), pages 459-477, February.
    11. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2019. "Utilizing multi-stage behavior change theory to model the process of bike share adoption," Transport Policy, Elsevier, vol. 77(C), pages 30-45.
    12. Tapp, Alan & Davis, Adrian & Nancarrow, Clive & Jones, Simon, 2016. "Great Britain adults’ opinions on cycling: Implications for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 14-28.
    13. Xing, Yan, 2012. "Contributions Of Individual, Physical, And Social Environmental Factors To Bicycling: A Structural Equations Modeling Study Of Six Small U.S. Cities," Institute of Transportation Studies, Working Paper Series qt4ch0j9sp, Institute of Transportation Studies, UC Davis.
    14. de Kruijf, Joost & van der Waerden, Peter & Feng, Tao & Böcker, Lars & van Lierop, Dea & Ettema, Dick & Dijst, Martin, 2021. "Integrated weather effects on e-cycling in daily commuting: A longitudinal evaluation of weather effects on e-cycling in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 305-315.
    15. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    16. Iwińska, Katarzyna & Blicharska, Malgorzata & Pierotti, Livia & Tainio, Marko & de Nazelle, Audrey, 2018. "Cycling in Warsaw, Poland – Perceived enablers and barriers according to cyclists and non-cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 291-301.
    17. Michał Adam Kwiatkowski & Elżbieta Grzelak-Kostulska & Jadwiga Biegańska, 2021. "Could It Be a Bike for Everyone? The Electric Bicycle in Poland," Energies, MDPI, vol. 14(16), pages 1-19, August.
    18. Piras, Francesco & Sottile, Eleonora & Tuveri, Giovanni & Meloni, Italo, 2021. "Could psychosocial variables help assess pro-cycling policies?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 108-128.
    19. Anne C. Lusk & Walter C. Willett & Vivien Morris & Christopher Byner & Yanping Li, 2019. "Bicycle Facilities Safest from Crime and Crashes: Perceptions of Residents Familiar with Higher Crime/Lower Income Neighborhoods in Boston," IJERPH, MDPI, vol. 16(3), pages 1-21, February.
    20. Mário Meireles & Paulo J. G. Ribeiro, 2020. "Digital Platform/Mobile App to Boost Cycling for the Promotion of Sustainable Mobility in Mid-Sized Starter Cycling Cities," Sustainability, MDPI, vol. 12(5), pages 1-27, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:38:y:2018:i:2:p:184-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.