IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v44y2017i4d10.1007_s11116-016-9682-x.html
   My bibliography  Save this article

Overcoming barriers to cycling: understanding frequency of cycling in a University setting and the factors preventing commuters from cycling on a regular basis

Author

Listed:
  • Kevin Manaugh

    (McGill School of Environment)

  • Geneviève Boisjoly

    (McGill University)

  • Ahmed El-Geneidy

    (McGill University)

Abstract

Much local and regional transport policy is attempting to increase cycling as an everyday mode of travel through infrastructure changes, education initiatives, and safety campaigns. While considerable research has examined the influence of the built form on cycling, less research has examined the barriers that prevent people who wish to cycle more (as part of their routine) from doing so. This study examines several factors influencing the frequency by which people do (and do not) cycle in a campus setting in a large metropolitan area. Mixed methods reveal differences between barriers to cycling as well as the relative strength of these barriers across categories of age, sex, and current mode used. A multinomial logit model, which controls for residential self-selection effects, predicts whether and how often a respondent cycles based on socio-demographic and trip characteristics. The presence of cycle paths is found to be strongly associated with a higher frequency of cycling commutes. Additionally, an analysis of stated barriers reveals effort and a lack of safety as the most important barriers to potential cyclists. Finally, a qualitative analysis of respondents’ open-ended responses confirms the influence of bicycle paths, but reveals other factors such as the importance of improved interactions among various street users. Findings from this research can be of benefit to transportation engineers and planners who are aiming to increase the use of cycling among various groups of commuters.

Suggested Citation

  • Kevin Manaugh & Geneviève Boisjoly & Ahmed El-Geneidy, 2017. "Overcoming barriers to cycling: understanding frequency of cycling in a University setting and the factors preventing commuters from cycling on a regular basis," Transportation, Springer, vol. 44(4), pages 871-884, July.
  • Handle: RePEc:kap:transp:v:44:y:2017:i:4:d:10.1007_s11116-016-9682-x
    DOI: 10.1007/s11116-016-9682-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9682-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9682-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pooley, Colin G. & Horton, Dave & Scheldeman, Griet & Mullen, Caroline & Jones, Tim & Tight, Miles & Jopson, Ann & Chisholm, Alison, 2013. "Policies for promoting walking and cycling in England: A view from the street," Transport Policy, Elsevier, vol. 27(C), pages 66-72.
    2. Yeung, Jennifer & Wearing, Scott & Hills, Andrew P., 2008. "Child transport practices and perceived barriers in active commuting to school," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 895-900, July.
    3. Meghan Winters & Gavin Davidson & Diana Kao & Kay Teschke, 2011. "Motivators and deterrents of bicycling: comparing influences on decisions to ride," Transportation, Springer, vol. 38(1), pages 153-168, January.
    4. Daley, Michelle & Rissel, Chris, 2011. "Perspectives and images of cycling as a barrier or facilitator of cycling," Transport Policy, Elsevier, vol. 18(1), pages 211-216, January.
    5. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    6. Schneider, Robert J., 2013. "Theory of routine mode choice decisions: An operational framework to increase sustainable transportation," Transport Policy, Elsevier, vol. 25(C), pages 128-137.
    7. Pooley, Colin G. & Horton, Dave & Scheldeman, Griet & Tight, Miles & Jones, Tim & Chisholm, Alison & Harwatt, Helen & Jopson, Anne, 2011. "Household decision-making for everyday travel: a case study of walking and cycling in Lancaster (UK)," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1601-1607.
    8. Bergström, A. & Magnusson, R., 2003. "Potential of transferring car trips to bicycle during winter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 649-666, October.
    9. Gatersleben, Birgitta & Appleton, Katherine M., 2007. "Contemplating cycling to work: Attitudes and perceptions in different stages of change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 302-312, May.
    10. Shannon, Tya & Giles-Corti, Billie & Pikora, Terri & Bulsara, Max & Shilton, Trevor & Bull, Fiona, 2006. "Active commuting in a university setting: Assessing commuting habits and potential for modal change," Transport Policy, Elsevier, vol. 13(3), pages 240-253, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adsule, Poonam & Kadali, B Raghuram, 2024. "Analysis of contributing factors in decision to bicycle in developing countries context," Transport Policy, Elsevier, vol. 147(C), pages 50-58.
    2. Luqi Wang, 2018. "Barriers to Implementing Pro-Cycling Policies: A Case Study of Hamburg," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    3. Tatiana Cantillo & Andrés Vargas & Víctor Cantillo & José Ramos, 2020. "What determines university student’s willingness to pay for bikeways?," Transportation, Springer, vol. 47(5), pages 2267-2286, October.
    4. Fernando Fonseca & Paulo Ribeiro & Carolina Neiva, 2023. "A Planning Practice Method to Assess the Potential for Cycling and to Design a Bicycle Network in a Starter Cycling City in Portugal," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    5. Hossain, Sanjana & Loa, Patrick & Ong, Felita & Habib, Khandker Nurul, 2022. "The determinants of commute mode usage frequency of post-secondary students in the Greater Toronto and Hamilton Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 164-185.
    6. Nguyen, Minh Hieu & Pojani, Dorina, 2024. "The effect of fuel price fluctuations on utilitarian cycling rates: A survey of cyclists in Vietnam," Journal of Transport Geography, Elsevier, vol. 115(C).
    7. Audrius Dėdelė & Auksė Miškinytė, 2021. "Promoting Sustainable Mobility: A Perspective from Car and Public Transport Users," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    8. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    9. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    10. Qiang Liu & Toshiaki Yamada & Hang Liu & Li Lin & Qiaoling Fang, 2022. "Healthy Behavior and Environmental Behavior Correlate with Bicycle Commuting," IJERPH, MDPI, vol. 19(6), pages 1-12, March.
    11. Antonio Castillo-Paredes & Natalia Inostroza Jiménez & Maribel Parra-Saldías & Ximena Palma-Leal & José Luis Felipe & Itziar Págola Aldazabal & Ximena Díaz-Martínez & Fernando Rodríguez-Rodríguez, 2021. "Environmental and Psychosocial Barriers Affect the Active Commuting to University in Chilean Students," IJERPH, MDPI, vol. 18(4), pages 1-14, February.
    12. Vallejo-Borda, Jose Agustin & Giesen, Ricardo & Basnak, Paul & Reyes, José P. & Mella Lira, Beatriz & Beck, Matthew J. & Hensher, David A. & Ortúzar, Juan de Dios, 2022. "Characterising public transport shifting to active and private modes in South American capitals during the COVID-19 pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 186-205.
    13. Iwińska, Katarzyna & Blicharska, Malgorzata & Pierotti, Livia & Tainio, Marko & de Nazelle, Audrey, 2018. "Cycling in Warsaw, Poland – Perceived enablers and barriers according to cyclists and non-cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 291-301.
    14. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    2. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    3. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    4. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    5. Dandan Xu & Yang Bain & Shinan Shu & Xiaodong Zhang, 2022. "Staged Transition Process from Driving to Bicycling Based on the Effects of Latent Variables," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    6. Thigpen, Calvin & Fischer, Jaimy & Nelson, Trisalyn & Therrien, Suzanne & Fuller, Daniel & Gauvin, Lise & Winters, Meghan, 2019. "Who is ready to bicycle? Categorizing and mapping bicyclists with behavior change concepts," Transport Policy, Elsevier, vol. 82(C), pages 11-17.
    7. Yan Wang & Yibin Ao & Yuting Zhang & Yan Liu & Lei Zhao & Yunfeng Chen, 2019. "Impact of the Built Environment and Bicycling Psychological Factors on the Acceptable Bicycling Distance of Rural Residents," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    8. Nguyen, Minh Hieu & Pojani, Dorina, 2024. "The effect of fuel price fluctuations on utilitarian cycling rates: A survey of cyclists in Vietnam," Journal of Transport Geography, Elsevier, vol. 115(C).
    9. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    10. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    11. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    12. Tapp, Alan & Davis, Adrian & Nancarrow, Clive & Jones, Simon, 2016. "Great Britain adults’ opinions on cycling: Implications for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 14-28.
    13. Gustav Bösehans & Ian Walker, 2020. "Do supra-modal traveller types exist? A travel behaviour market segmentation using Goal framing theory," Transportation, Springer, vol. 47(1), pages 243-273, February.
    14. Cass, Noel & Faulconbridge, James, 2016. "Commuting practices: New insights into modal shift from theories of social practice," Transport Policy, Elsevier, vol. 45(C), pages 1-14.
    15. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    16. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    17. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    18. Verma, Meghna & Rahul, T.M. & Reddy, Peesari Vamshidhar & Verma, Ashish, 2016. "The factors influencing bicycling in the Bangalore city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 29-40.
    19. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    20. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:4:d:10.1007_s11116-016-9682-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.