IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/228918.html
   My bibliography  Save this book chapter

Simulating the impact of digitalization on retail logistics efficiency

In: Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 29

Author

Listed:
  • Loske, Dominik
  • Klumpp, Matthias

Abstract

Purpose: The study uses the results of an efficiency analysis for digitalization within a retail logistics blue-collar work system of professional truck drivers and aims to elaborate an ex-ante efficiency simulation approach for digitalization scenarios. Methodology: The simulation method combines the efficiency scores of Data Envelopment Analysis (DEA), statistical bootstrapping, and regression analysis. By increas-ing the original sample size of n=30 truck drivers up to 60,000 samples through 2,000 bootstrap iterations, it is possible to gain a highly significant regression function. Findings: The mathematical simulation approach can be transferred to alternate scenarios in terms of forecasting efficiency development based on the experience distribution of the workforce. Originality: As the impact of digitalization on the efficiency of blue-collar work systems is often unknown, this methodology could provide insights for logistics researchers and managers when estimating the efficiency impact of digitalization.

Suggested Citation

  • Loske, Dominik & Klumpp, Matthias, 2020. "Simulating the impact of digitalization on retail logistics efficiency," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 77-111, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:228918
    DOI: 10.15480/882.3126
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/228918/1/hicl-2020-29-077.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.3126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    2. Ferney-Alexis Giraldo-Castrillon & Gabriel-Jaime Páramo-Bermúdez & Juan-Manuel Muñoz-Betancur, 2019. "Monitoring of Machining in the Cloud as a Cost Management Service and Follow of Cutting Parameters: Environment Developed With IoT Tools," International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), IGI Global, vol. 9(3), pages 26-41, July.
    3. Salvatore T. March & Gary D. Scudder, 2019. "Predictive maintenance: strategic use of IT in manufacturing organizations," Information Systems Frontiers, Springer, vol. 21(2), pages 327-341, April.
    4. Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    6. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    7. Loske, Dominic & Klumpp, Matthias, 2018. "Efficiency analysis for digitalised working systems of truck drivers," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 99-119, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    8. Salvatore T. March & Gary D. Scudder, 0. "Predictive maintenance: strategic use of IT in manufacturing organizations," Information Systems Frontiers, Springer, vol. 0, pages 1-15.
    9. Kleer, Robin & Piller, Frank T., 2019. "Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 216(C), pages 23-34.
    10. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    2. Gadanakis, Yiorgos & Bennett, Richard & Park, Julian & Areal, Francisco Jose, 2015. "Improving productivity and water use efficiency: A case study of farms in England," Agricultural Water Management, Elsevier, vol. 160(C), pages 22-32.
    3. Alessandro Fontana & Andrea Barni & Deborah Leone & Maurizio Spirito & Agata Tringale & Matteo Ferraris & Joao Reis & Gil Goncalves, 2021. "Circular Economy Strategies for Equipment Lifetime Extension: A Systematic Review," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    4. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    5. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, August.
    6. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    7. H Fukuyama & W L Weber, 2009. "Estimating indirect allocative inefficiency and productivity change," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1594-1608, November.
    8. María Victoria Uribe‐Bohorquez & Jennifer Martínez‐Ferrero & Isabel‐María García‐Sánchez, 2019. "Women on boards and efficiency in a business‐orientated environment," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(1), pages 82-96, January.
    9. Alessandra Cepparulo & Gilles Mourre, 2020. "How and How Much? The Growth-Friendliness of Public Spending through the Lens," European Economy - Discussion Papers 132, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    10. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    11. Santos, Joana & Simões, Pedro & Costa, Álvaro & Cunha Marques, Rui, 2010. "Efficiency of the Portuguese metros. is it different from other European metros?," MPRA Paper 34904, University Library of Munich, Germany.
    12. Kristof De Witte & Rui Marques, 2010. "Designing performance incentives, an international benchmark study in the water sector," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 189-220, June.
    13. Nadia M. Guerrero & Juan Aparicio & Daniel Valero-Carreras, 2022. "Combining Data Envelopment Analysis and Machine Learning," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    14. Wijesiri, Mahinda & Yaron, Jacob & Meoli, Michele, 2017. "Assessing the financial and outreach efficiency of microfinance institutions: Do age and size matter?," Journal of Multinational Financial Management, Elsevier, vol. 40(C), pages 63-76.
    15. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    16. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    17. Andreas Dellnitz & Elmar Reucher & Andreas Kleine, 2021. "Efficiency evaluation in data envelopment analysis using strong defining hyperplanes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 441-465, June.
    18. Karin Larsén, 2010. "Effects of machinery‐sharing arrangements on farm efficiency: evidence from Sweden," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 497-506, September.
    19. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    20. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:228918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.