IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0248515.html
   My bibliography  Save this article

Automatic fault detection of sensors in leather cutting control system under GWO-SVM algorithm

Author

Listed:
  • Ke Luo
  • Yingying Jiao

Abstract

The purposes are to meet the individual needs of leather production, improve the efficiency of leather cutting, and increase the product’s competitiveness. According to the existing problems in current leather cutting systems, a Fault Diagnosis (FD) method combining Convolutional Neural Network (CNN) and the Support Vector Machine (SVM) of Gray Wolf Optimizer (GWO) is proposed. This method first converts the original signal into a scale spectrogram and then selects the pre-trained CNN model, AlexNet, to extract the signal scale spectrogram’s features. Next, the Principal Component Analysis (PCA) reduces the obtained feature’s dimensionality. Finally, the normalized data are input into GWO’s SVM classifier to diagnose the bearing’s faults. Results demonstrate that the proposed model has higher cutting accuracy than the latest fault detection models. After model optimization, when c is 25 and g is 0.2, the model accuracy can reach 99.24%, an increase of 66.96% compared with traditional fault detection models. The research results can provide ideas and practical references for improving leather cutting enterprises’ process flow.

Suggested Citation

  • Ke Luo & Yingying Jiao, 2021. "Automatic fault detection of sensors in leather cutting control system under GWO-SVM algorithm," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0248515
    DOI: 10.1371/journal.pone.0248515
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248515
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248515&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0248515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
    2. Cho, Seongpil & Gao, Zhen & Moan, Torgeir, 2018. "Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 306-321.
    3. Saro Lee & Soo-Min Hong & Hyung-Sup Jung, 2017. "A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    4. Xu, Guannan & Wu, Yuchen & Minshall, Tim & Zhou, Yuan, 2018. "Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 208-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. Dragana Radicic & Geoffrey Pugh & David Douglas, 2020. "Promoting cooperation in innovation ecosystems: evidence from European traditional manufacturing SMEs," Small Business Economics, Springer, vol. 54(1), pages 257-283, January.
    3. Maurizio Bevilacqua & Eleonora Bottani & Filippo Emanuele Ciarapica & Francesco Costantino & Luciano Di Donato & Alessandra Ferraro & Giovanni Mazzuto & Andrea Monteriù & Giorgia Nardini & Marco Orten, 2020. "Digital Twin Reference Model Development to Prevent Operators’ Risk in Process Plants," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    4. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    5. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    6. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Patrycja Klimas & Wojciech Czakon, 2022. "Gaming innovation ecosystem: actors, roles and co-innovation processes," Review of Managerial Science, Springer, vol. 16(7), pages 2213-2259, October.
    8. Karolis Andriuškevičius & Dalia Štreimikienė & Irena Alebaitė, 2022. "Convergence between Indicators for Measuring Sustainable Development and M&A Performance in the Energy Sector," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    9. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    10. Arenal, Alberto & Armuña, Cristina & Feijoo, Claudio & Ramos, Sergio & Xu, Zimu & Moreno, Ana, 2020. "Innovation ecosystems theory revisited: The case of artificial intelligence in China," Telecommunications Policy, Elsevier, vol. 44(6).
    11. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    13. Jihong Chen & Kai Zhang & Yuan Zhou & Yufei Liu & Lingfeng Li & Zheng Chen & Li Yin, 2019. "Exploring the Development of Research, Technology and Business of Machine Tool Domain in New-Generation Information Technology Environment Based on Machine Learning," Sustainability, MDPI, vol. 11(12), pages 1-38, June.
    14. Qian, XiaoYi & Sun, TianHe & Zhang, YuXian & Wang, BaoShi & Awad Gendeel, Mohammed Altayeb, 2023. "Wind turbine fault detection based on spatial-temporal feature and neighbor operation state," Renewable Energy, Elsevier, vol. 219(P1).
    15. Gomes, Leonardo Augusto de Vasconcelos & Flechas, Ximena Alejandra & Facin, Ana Lucia Figueiredo & Borini, Felipe Mendes, 2021. "Ecosystem management: Past achievements and future promises," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    16. Patrycja Klimas & Wojciech Czakon, 2022. "Species in the wild: a typology of innovation ecosystems," Review of Managerial Science, Springer, vol. 16(1), pages 249-282, January.
    17. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
    19. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    20. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.