IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i20p5865-5880.html
   My bibliography  Save this article

Incorporation of engineering knowledge into the modeling process: a local approach

Author

Listed:
  • Heeyoung Kim
  • Justin T. Vastola
  • Sungil Kim
  • Jye-Chyi Lu
  • Martha A. Grover

Abstract

Process modelling is the foundation of developing process controllers for monitoring and improving process/system health. Modelling process behaviours using a pure empirical approach might not be feasible due to limitation in collecting large amount of data. Engineering models provide valuable information about processes’ general behaviours but they might not capture distinct characteristics in the particular process studied. Many recent publications presented various ideas of using limited experimental data to adjust engineering models for making them suitable for certain applications. However, the focuses there are global adjustments, where modification of engineering models impacts the entire model-application region. In practice, some engineering models are only valid in a part of experimental data domain. Moreover, many discrepancies between engineering models and experimental data are in local regions. For example, in a chemical vapour deposition process, at high temperatures a process may be described by a diffusion limited model, while at low temperatures the process may be described by a reaction limited model. To address these problems, this article proposes two approaches for integrating engineering and data models: local model calibration and local model averaging. Through the local model calibration, the discrepancies between engineering’s first-principle models and experimental data are resolved locally based on experts’ feedbacks. To combine models adjusted locally in some regions and also models required little adjustments in other regions, a model averaging procedure based on local kernel weights is proposed. The effectiveness of the proposed method is demonstrated on simulated examples, and compared against a well-known existing global-adjustment method.

Suggested Citation

  • Heeyoung Kim & Justin T. Vastola & Sungil Kim & Jye-Chyi Lu & Martha A. Grover, 2017. "Incorporation of engineering knowledge into the modeling process: a local approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5865-5880, October.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:20:p:5865-5880
    DOI: 10.1080/00207543.2016.1278082
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1278082
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1278082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    2. Sungil Kim & Heeyoung Kim & Jye‐Chyi Lu & Michael J. Casciato & Martha A. Grover & Dennis W. Hess & Richard W. Lu & Xin Wang, 2015. "Layers of Experiments with Adaptive Combined Design," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(2), pages 127-142, March.
    3. R.M. Thirupathi & S. Vinodh, 2016. "Application of interpretive structural modelling and structural equation modelling for analysis of sustainable manufacturing factors in Indian automotive component sector," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6661-6682, November.
    4. Qiang Huang, 2010. "Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    2. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    3. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2020. "Assessment of community sustainable livelihoods capitals for the implementation of alternative energy technologies in Uganda – Africa," Renewable Energy, Elsevier, vol. 160(C), pages 886-902.
    4. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    5. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    6. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    7. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    8. Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
    9. Chand, Pushpendu & Thakkar, Jitesh J. & Ghosh, Kunal Kanti, 2020. "Analysis of supply chain sustainability with supply chain complexity, inter-relationship study using delphi and interpretive structural modeling for Indian mining and earthmoving machinery industry," Resources Policy, Elsevier, vol. 68(C).
    10. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    11. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.
    12. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    13. Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
    14. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    15. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).
    16. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    17. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    18. Huang, Xucong & Peng, Zhaoqin & Tang, Diyin & Chen, Juan & Zio, Enrico & Zheng, Zaiping, 2024. "A physics-informed autoencoder for system health state assessment based on energy-oriented system performance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    20. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:20:p:5865-5880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.