IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v305y2021i1d10.1007_s10479-021-04212-y.html
   My bibliography  Save this article

Minmax due-date assignment on a two-machine flowshop

Author

Listed:
  • Baruch Mor

    (Ariel University)

  • Gur Mosheiov

    (The Hebrew University)

Abstract

We extend two classical scheduling and due-date assignment models. In the first (known in the literature as DIF), due-dates are determined by penalties for exceeding pre-specified deadlines. In the second (known as SLK), due-dates are assigned to jobs as a (linear) function of their processing times. We focus on the minmax versions of these models, and extend the single machine versions to a two-machine flowshop. We further extend the settings to that of a due-window. All the problems studied in this note are shown to have polynomial time solutions.

Suggested Citation

  • Baruch Mor & Gur Mosheiov, 2021. "Minmax due-date assignment on a two-machine flowshop," Annals of Operations Research, Springer, vol. 305(1), pages 191-209, October.
  • Handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-04212-y
    DOI: 10.1007/s10479-021-04212-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04212-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04212-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B Mor & G Mosheiov, 2012. "Minmax scheduling problems with common flow-allowance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1284-1293, September.
    2. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    3. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    4. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    5. Xinyu Sun & Xin-Na Geng & Tao Liu, 2020. "Due-window assignment scheduling in the proportionate flow shop setting," Annals of Operations Research, Springer, vol. 292(1), pages 113-131, September.
    6. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    7. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    8. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    9. Enrique Gerstl & Gur Mosheiov, 2013. "Minmax due-date assignment with a time window for acceptable lead-times," Annals of Operations Research, Springer, vol. 211(1), pages 167-177, December.
    10. Dvir Shabtay & George Steiner, 2008. "The single-machine earliness-tardiness scheduling problem with due date assignment and resource-dependent processing times," Annals of Operations Research, Springer, vol. 159(1), pages 25-40, March.
    11. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    12. Mor, Baruch & Mosheiov, Gur, 2016. "Minsum and minmax scheduling on a proportionate flowshop with common flow-allowance," European Journal of Operational Research, Elsevier, vol. 254(2), pages 360-370.
    13. Qing Yue & Guohua Wan, 2016. "Single machine SLK/DIF due window assignment problem with job-dependent linear deterioration effects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(6), pages 872-883, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    2. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.
    3. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    4. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    5. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    6. Mor, Baruch & Mosheiov, Gur, 2016. "Minsum and minmax scheduling on a proportionate flowshop with common flow-allowance," European Journal of Operational Research, Elsevier, vol. 254(2), pages 360-370.
    7. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    8. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    9. Enrique Gerstl & Gur Mosheiov, 2013. "Minmax due-date assignment with a time window for acceptable lead-times," Annals of Operations Research, Springer, vol. 211(1), pages 167-177, December.
    10. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    11. Baruch Mor, 2019. "Minmax scheduling problems with common due-date and completion time penalty," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 50-71, July.
    12. Yue, Qing & Zhou, Shenghai, 2021. "Due-window assignment scheduling problem with stochastic processing times," European Journal of Operational Research, Elsevier, vol. 290(2), pages 453-468.
    13. Baruch Mor & Gur Mosheiov, 2021. "A note on the single machine CON and CONW problems with lot scheduling," Journal of Combinatorial Optimization, Springer, vol. 42(2), pages 327-338, August.
    14. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    15. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    16. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
    17. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    18. Lin, Shih-Wei & Chou, Shuo-Yan & Ying, Kuo-Ching, 2007. "A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1294-1301, March.
    19. Zong-Jun Wei & Li-Yan Wang & Lei Zhang & Ji-Bo Wang & Ershen Wang, 2023. "Single-Machine Maintenance Activity Scheduling with Convex Resource Constraints and Learning Effects," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
    20. Jin Qian & Yu Zhan, 2022. "The Due Window Assignment Problems with Deteriorating Job and Delivery Time," Mathematics, MDPI, vol. 10(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-04212-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.