IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i2p301-312.html
   My bibliography  Save this article

A unified approach for scheduling with convex resource consumption functions using positional penalties

Author

Listed:
  • Leyvand, Yaron
  • Shabtay, Dvir
  • Steiner, George

Abstract

We provide a unified model for solving single machine scheduling problems with controllable processing times in polynomial time using positional penalties. We show how this unified model can be useful in solving three different groups of scheduling problems. The first group includes four different due date assignment problems to minimize an objective function which includes costs for earliness, tardiness, due date assignment, makespan and total resource consumption. The second group includes three different due date assignment problems to minimize an objective function which includes the weighted number of tardy jobs, due date assignment costs, makespan and total resource consumption costs. The third group includes various scheduling problems which do not involve due date assignment decisions. We show that each of the problems from the first and the third groups can be reduced to a special case of our unified model and thus can be solved in O(n3) time. Furthermore, we show how the unified model can be used repeatedly as a subroutine to solve all problems from the second group in O(n4) time. In addition, we also show that faster algorithms exist for several special cases.

Suggested Citation

  • Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:2:p:301-312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00157-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Surya Liman & Shrikant Panwalkar & Sansern Thongmee, 1997. "A single machine scheduling problem with common due window and controllable processing times," Annals of Operations Research, Springer, vol. 70(0), pages 145-154, April.
    2. Alidaee, Bahram & Ahmadian, Ahmad, 1993. "Two parallel machine sequencing problems involving controllable job processing times," European Journal of Operational Research, Elsevier, vol. 70(3), pages 335-341, November.
    3. Cheng, T.C. Edwin & Kovalyov, Mikhail Y. & Shakhlevich, Natalia V., 2006. "Scheduling with controllable release dates and processing times: Total completion time minimization," European Journal of Operational Research, Elsevier, vol. 175(2), pages 769-781, December.
    4. Clyde L. Monma & Alexander Schrijver & Michael J. Todd & Victor K. Wei, 1990. "Convex Resource Allocation Problems on Directed Acyclic Graphs: Duality, Complexity, Special Cases, and Extensions," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 736-748, November.
    5. C. Ng & T. Cheng & Adam Janiak & Mikhail Kovalyov, 2005. "Group Scheduling with Controllable Setup and Processing Times: Minimizing Total Weighted Completion Time," Annals of Operations Research, Springer, vol. 133(1), pages 163-174, January.
    6. Michael A. Trick, 1994. "Scheduling Multiple Variable-Speed Machines," Operations Research, INFORMS, vol. 42(2), pages 234-248, April.
    7. Cheng, T.C. Edwin & Kovalyov, Mikhail Y. & Shakhlevich, Natalia V., 2006. "Scheduling with controllable release dates and processing times: Makespan minimization," European Journal of Operational Research, Elsevier, vol. 175(2), pages 751-768, December.
    8. Janiak, Adam & Kovalyov, Mikhail Y., 1996. "Single machine scheduling subject to deadlines and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 94(2), pages 284-291, October.
    9. Biskup, Dirk & Jahnke, Hermann, 2001. "Common due date assignment for scheduling on a single machine with jointly reducible processing times," International Journal of Production Economics, Elsevier, vol. 69(3), pages 317-322, February.
    10. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    11. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    12. Panwalkar, S. S. & Rajagopalan, R., 1992. "Single-machine sequencing with controllable processing times," European Journal of Operational Research, Elsevier, vol. 59(2), pages 298-302, June.
    13. John J. Kanet, 1981. "Minimizing Variation of Flow Time in Single Machine Systems," Management Science, INFORMS, vol. 27(12), pages 1453-1459, December.
    14. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
    15. Uttarayan Bagchi, 1989. "Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems," Operations Research, INFORMS, vol. 37(1), pages 118-125, February.
    16. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(1), pages 29-35, May.
    17. Dvir Shabtay & George Steiner, 2007. "Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 332-350, March.
    18. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 107-113, June.
    19. T.C.E. Cheng & A. Janiak, 2000. "A permutation flow-shop scheduling problem with convex models of operation processing times," Annals of Operations Research, Springer, vol. 96(1), pages 39-60, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shisheng & Ng, C.T. & Yuan, Jinjiang, 2011. "Group scheduling and due date assignment on a single machine," International Journal of Production Economics, Elsevier, vol. 130(2), pages 230-235, April.
    2. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    3. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    4. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    5. Shabtay, Dvir & Zofi, Moshe, 2018. "Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 191-200.
    6. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    7. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    8. Lu Liu & Jian-Jun Wang & Xiao-Yuan Wang, 2016. "Single machine due-window assignment scheduling with resource-dependent processing times to minimise total resource consumption cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1186-1195, February.
    9. Körpeoglu, Ersin & Yaman, Hande & Selim Aktürk, M., 2011. "A multi-stage stochastic programming approach in master production scheduling," European Journal of Operational Research, Elsevier, vol. 213(1), pages 166-179, August.
    10. Qian, Jianbo & Steiner, George, 2013. "Fast algorithms for scheduling with learning effects and time-dependent processing times on a single machine," European Journal of Operational Research, Elsevier, vol. 225(3), pages 547-551.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koulamas, Christos & Gupta, Sushil & Kyparisis, George J., 2010. "A unified analysis for the single-machine scheduling problem with controllable and non-controllable variable job processing times," European Journal of Operational Research, Elsevier, vol. 205(2), pages 479-482, September.
    2. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    3. Dvir Shabtay & George Steiner, 2008. "The single-machine earliness-tardiness scheduling problem with due date assignment and resource-dependent processing times," Annals of Operations Research, Springer, vol. 159(1), pages 25-40, March.
    4. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
    5. Yaron Leyvand & Dvir Shabtay & George Steiner & Liron Yedidsion, 2010. "Just-in-time scheduling with controllable processing times on parallel machines," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 347-368, April.
    6. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    7. Dvir Shabtay & George Steiner, 2007. "Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 332-350, March.
    8. Biskup, Dirk & Jahnke, Hermann, 2001. "Common due date assignment for scheduling on a single machine with jointly reducible processing times," International Journal of Production Economics, Elsevier, vol. 69(3), pages 317-322, February.
    9. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    10. J-G Kim & D-H Lee, 2009. "Algorithms for common due-date assignment and sequencing on a single machine with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1264-1272, September.
    11. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    12. Cheng, T.C. Edwin & Kovalyov, Mikhail Y. & Shakhlevich, Natalia V., 2006. "Scheduling with controllable release dates and processing times: Total completion time minimization," European Journal of Operational Research, Elsevier, vol. 175(2), pages 769-781, December.
    13. Min Ji & Sai Liu & Xiaolin Zhang & Keke Cao & T. C. E. Cheng, 2017. "Sequencing Games with Slack Due Windows and Group Technology Considerations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 121-133, February.
    14. Yedidsion, Liron & Shabtay, Dvir & Korach, Ephraim & Kaspi, Moshe, 2009. "A bicriteria approach to minimize number of tardy jobs and resource consumption in scheduling a single machine," International Journal of Production Economics, Elsevier, vol. 119(2), pages 298-307, June.
    15. Shabtay, Dvir & Bensoussan, Yaron & Kaspi, Moshe, 2012. "A bicriteria approach to maximize the weighted number of just-in-time jobs and to minimize the total resource consumption cost in a two-machine flow-shop scheduling system," International Journal of Production Economics, Elsevier, vol. 136(1), pages 67-74.
    16. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    17. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    18. S.S. Panwalkar & Christos Koulamas, 2015. "On equivalence between the proportionate flow shop and single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 595-603, October.
    19. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    20. Mor, Baruch & Mosheiov, Gur, 2012. "Scheduling a maintenance activity and due-window assignment based on common flow allowance," International Journal of Production Economics, Elsevier, vol. 135(1), pages 222-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:2:p:301-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.