IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v20y2020i10p1597-1623.html
   My bibliography  Save this article

Inversion of convex ordering in the VIX market

Author

Listed:
  • Julien Guyon

Abstract

We investigate conditions for the existence of a continuous model on the S&P 500 index (SPX) that jointly calibrates to a full surface of SPX implied volatilities and to the VIX smiles. We present a novel approach based on the SPX smile calibration condition ${\mathbb E}[\sigma _t^2|S_t] = \sigma _{\mathrm {lv}}^2(t,S_t) $E[σt2|St]=σlv2(t,St). In the limiting case of instantaneous VIX, a novel application of martingale transport to finance shows that such model exists if and only if, for each time t, the local variance $\sigma _{\mathrm {lv}}^2(t,S_t) $σlv2(t,St) is smaller than the instantaneous variance $\sigma _t^2 $σt2 in convex order. The real case of a 30-day VIX is more involved, as averaging over 30 days and projecting onto a filtration can undo convex ordering. We show that in usual market conditions, and for reasonable smile extrapolations, the distribution of ${\rm VIX}_T^2 $VIXT2 in the market local volatility model is larger than the market-implied distribution of ${\rm VIX}_T^2 $VIXT2 in convex order for short maturities T, and that the two distributions are not rankable in convex order for intermediate maturities. In particular, a necessary condition for continuous models to jointly calibrate to the SPX and VIX markets is the inversion of convex ordering property: the fact that, even though associated local variances are smaller than instantaneous variances in convex order, the VIX squared is larger in convex order in the associated local volatility model than in the original model for short maturities. We argue and numerically demonstrate that, when the (typically negative) spot–vol correlation is large enough in absolute value, (a) traditional stochastic volatility models with large mean reversion, and (b) rough volatility models with small Hurst exponent, satisfy the inversion of convex ordering property, and more generally can reproduce the market term-structure of convex ordering of the local and stochastic squared VIX.

Suggested Citation

  • Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
  • Handle: RePEc:taf:quantf:v:20:y:2020:i:10:p:1597-1623
    DOI: 10.1080/14697688.2020.1753885
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2020.1753885
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2020.1753885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    2. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 27-48, January.
    3. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    4. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    5. Peter Carr & Sergey Nadtochiy, 2017. "Local Variance Gamma And Explicit Calibration To Option Prices," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 151-193, January.
    6. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    7. Rama Cont & Thomas Kokholm, 2013. "A Consistent Pricing Model For Index Options And Volatility Derivatives," Post-Print hal-00801536, HAL.
    8. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
    9. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    10. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    12. Hadrien de March & Pierre Henry-Labordere, 2019. "Building Arbitrage-Free Implied Volatility: Sinkhorn'S Algorithm And Variants," Working Papers hal-02011533, HAL.
    13. Antoine Jacquier & Claude Martini & Aitor Muguruza, 2018. "On VIX futures in the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 45-61, January.
    14. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    15. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    16. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    17. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    18. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    19. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    20. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    2. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    3. Martino Grasselli & Andrea Mazzoran & Andrea Pallavicini, 2024. "A general framework for a joint calibration of VIX and VXX options," Annals of Operations Research, Springer, vol. 336(1), pages 3-26, May.
    4. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    5. Mora-Valencia, Andrés & Rodríguez-Raga, Santiago & Vanegas, Esteban, 2021. "Skew index: Descriptive analysis, predictive power, and short-term forecast," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    2. Ivan Guo & Gregoire Loeper & Jan Obloj & Shiyi Wang, 2020. "Joint Modelling and Calibration of SPX and VIX by Optimal Transport," Papers 2004.02198, arXiv.org, revised Sep 2021.
    3. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    4. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.
    5. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    6. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
    7. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    8. repec:hal:wpaper:hal-03909334 is not listed on IDEAS
    9. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2023. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Post-Print hal-03909334, HAL.
    10. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    11. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
    12. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org.
    13. Florian Bourgey & Stefano De Marco & Emmanuel Gobet, 2022. "Weak approximations and VIX option price expansions in forward variance curve models," Papers 2202.10413, arXiv.org, revised May 2022.
    14. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
    15. Liexin Cheng & Xue Cheng & Xianhua Peng, 2024. "Joint Calibration to SPX and VIX Derivative Markets with Composite Change of Time Models," Papers 2404.16295, arXiv.org, revised Aug 2024.
    16. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    17. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    18. Zhiqiang Zhou & Wei Xu & Alexey Rubtsov, 2024. "Joint calibration of S&P 500 and VIX options under local stochastic volatility models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 273-310, January.
    19. Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
    20. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
    21. Qinwen Zhu & Gr'egoire Loeper & Wen Chen & Nicolas Langren'e, 2020. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Papers 2007.02113, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:20:y:2020:i:10:p:1597-1623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.