IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.10413.html
   My bibliography  Save this paper

Weak approximations and VIX option price expansions in forward variance curve models

Author

Listed:
  • Florian Bourgey
  • Stefano De Marco
  • Emmanuel Gobet

Abstract

We provide explicit approximation formulas for VIX futures and options in forward variance models, with particular emphasis on the family of so-called Bergomi models: the one-factor Bergomi model [Bergomi, Smile dynamics II, Risk, 2005], the rough Bergomi model [Bayer, Friz, and Gatheral, Pricing under rough volatility, Quantitative Finance, 16(6):887-904, 2016], and an enhanced version of the rough model that can generate realistic positive skew for VIX smiles -- introduced simultaneously by De Marco [Bachelier World Congress, 2018] and Guyon [Bachelier World Congress, 2018] on the lines of [Bergomi, Smile dynamics III, Risk, 2008], that we refer to as 'mixed rough Bergomi model'. Following the methodology set up in [Gobet and Miri, Weak approximation of averaged diffusion processes. Stochastic Process.\ Appl., 124(1):475-504, 2014], we derive weak approximations for the law of the VIX, leading to option price approximations under the form of explicit combinations of Black-Scholes prices and greeks. As new contributions, we cope with the fractional integration kernel appearing in rough models and treat the case of non-smooth payoffs, so to encompass VIX futures, call and put options. We stress that our approach does not rely on small-time asymptotics nor small-parameter (such as small volatility-of-volatility) asymptotics, and can therefore be applied to any option maturity and a wide range of parameter configurations. Our results are illustrated by several numerical experiments and calibration tests to VIX market data.

Suggested Citation

  • Florian Bourgey & Stefano De Marco & Emmanuel Gobet, 2022. "Weak approximations and VIX option price expansions in forward variance curve models," Papers 2202.10413, arXiv.org, revised May 2022.
  • Handle: RePEc:arx:papers:2202.10413
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.10413
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    2. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    3. Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
    4. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    5. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    6. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    7. Ryan McCrickerd & Mikko S. Pakkanen, 2018. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1877-1886, November.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Florian Bourgey & Stefano De Marco, 2021. "Multilevel Monte Carlo simulation for VIX options in the rough Bergomi model," Papers 2105.05356, arXiv.org, revised Jun 2022.
    10. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    12. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    13. Antoine Jacquier & Claude Martini & Aitor Muguruza, 2018. "On VIX futures in the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 45-61, January.
    14. Song‐Ping Zhu & Guang‐Hua Lian, 2012. "An analytical formula for VIX futures and its applications," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 166-190, February.
    15. Zhe Zhao & Zhenyu Cui & Ionuţ Florescu, 2018. "VIX derivatives valuation and estimation based on closed-form series expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-18, June.
    16. Ryan McCrickerd & Mikko S. Pakkanen, 2017. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Papers 1708.02563, arXiv.org, revised Mar 2018.
    17. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    18. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    19. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
    2. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Working Papers hal-02910724, HAL.
    3. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    4. Qinwen Zhu & Gr'egoire Loeper & Wen Chen & Nicolas Langren'e, 2020. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Papers 2007.02113, arXiv.org.
    5. Jan Matas & Jan Posp'iv{s}il, 2021. "On simulation of rough Volterra stochastic volatility models," Papers 2108.01999, arXiv.org, revised Aug 2022.
    6. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    7. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    8. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    9. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    10. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    11. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    12. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    13. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    14. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    15. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
    16. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    17. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    18. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    19. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    20. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.10413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.