IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i5p777-792.html
   My bibliography  Save this article

Predicting recovery rates using logistic quantile regression with bounded outcomes

Author

Listed:
  • Jhao-Siang Siao
  • Ruey-Ching Hwang
  • Chih-Kang Chu

Abstract

Logistic quantile regression (LQR) is used for studying recovery rates. It is developed using monotone transformations. Using Moody’s Ultimate Recovery Database, we show that the recovery rates in different partitions of the estimation sample have different distributions, and thus for predicting recovery rates, an error-minimizing quantile point over each of those partitions is determined for LQR. Using an expanding rolling window approach, the empirical results confirm that LQR with the error-minimizing quantile point has better and more robust out-of-sample performance than its competing alternatives, in the sense of yielding more accurate predicted recovery rates. Thus, LQR is a useful alternative for studying recovery rates.

Suggested Citation

  • Jhao-Siang Siao & Ruey-Ching Hwang & Chih-Kang Chu, 2016. "Predicting recovery rates using logistic quantile regression with bounded outcomes," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 777-792, May.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:5:p:777-792
    DOI: 10.1080/14697688.2015.1059952
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1059952
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1059952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
    2. Serena Gallo, 2021. "Fintech platforms: Lax or careful borrowers’ screening?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-33, December.
    3. Chih-Kang Chu & Ruey-Ching Hwang, 2019. "Predicting Loss Distributions for Small-Size Defaulted-Debt Portfolios Using a Convolution Technique that Allows Probability Masses to Occur at Boundary Points," Journal of Financial Services Research, Springer;Western Finance Association, vol. 56(1), pages 95-117, August.
    4. Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
    5. Chen, Cathy W.S. & Dong, Manh Cuong & Liu, Nathan & Sriboonchitta, Songsak, 2019. "Inferences of default risk and borrower characteristics on P2P lending," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    6. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
    7. Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
    8. Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
    9. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
    10. Bonollo Michele & Persio Luca Di & Prezioso Luca, 2018. "The Default Risk Charge approach to regulatory risk measurement processes," Dependence Modeling, De Gruyter, vol. 6(1), pages 309-330, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyuan Zhou, 2022. "Does the Source of Inheritance Matter in Bequest Attitudes? Evidence from Japan," Journal of Family and Economic Issues, Springer, vol. 43(4), pages 867-887, December.
    2. Campbell, Randall C. & Nagel, Gregory L., 2016. "Private information and limitations of Heckman's estimator in banking and corporate finance research," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 186-195.
    3. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    4. Ilona Babenko & Benjamin Bennett & John M Bizjak & Jeffrey L Coles & Jason J Sandvik, 2023. "Clawback Provisions and Firm Risk," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 12(2), pages 191-239.
    5. Şahan, Duygu & Tuna, Okan, 2018. "Environmental innovation of transportation sector in OECD countries," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 157-170, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Eric Fesselmeyer & Kiat Ying Seah, 2018. "Individual Payoffs and the Effect of Homeownership on Social Capital Investment," Journal of Housing Research, Taylor & Francis Journals, vol. 27(1), pages 59-78, January.
    7. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    8. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    9. Shaikh M. S. U. Eskander & Sam Fankhauser, 2022. "Income Diversification and Income Inequality: Household Responses to the 2013 Floods in Pakistan," Sustainability, MDPI, vol. 14(1), pages 1-12, January.
    10. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    11. Peter Harasztosi & Attila Lindner, 2019. "Who Pays for the Minimum Wage?," American Economic Review, American Economic Association, vol. 109(8), pages 2693-2727, August.
    12. Jinwon Kim & Jucheol Moon & Dongyun Yang, 2024. "Pigouvian Congestion Tolls and the Welfare Gain: Estimates for California Freeways," Working Papers 2402, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    13. Cho, Seong-Hoon & Kim, Heeho & Roberts, Roland K. & Kim, Taeyoung & Lee, Daegoon, 2014. "Effects of changes in forestland ownership on deforestation and urbanization and the resulting effects on greenhouse gas emissions," Journal of Forest Economics, Elsevier, vol. 20(1), pages 93-109.
    14. Kazuki Onji & John P. Tang, 2015. "A nation without a corporate income tax: Evidence from nineteenth century Japan," Discussion Papers in Economics and Business 15-12, Osaka University, Graduate School of Economics.
    15. Brown, Sarah & Greene, William H. & Harris, Mark N. & Taylor, Karl, 2015. "An inverse hyperbolic sine heteroskedastic latent class panel tobit model: An application to modelling charitable donations," Economic Modelling, Elsevier, vol. 50(C), pages 228-236.
    16. Roberto Martino & Phu Nguyen-Van, 2014. "Labour market regulation and fiscal parameters: A structural model for European regions," Working Papers of BETA 2014-19, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    17. Etienne Redor & Magnus Blomkvist, 2021. "Do all inside and affiliated directors hold the same value for shareholders?," Economics Bulletin, AccessEcon, vol. 41(3), pages 882-895.
    18. Upasak Das & Rupayan Pal & Udayan Rathore & Bibhas Saha, 2023. "Rein in pandemic by pricing vaccine: Does social trust matter?," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2023-008, Indira Gandhi Institute of Development Research, Mumbai, India.
    19. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    20. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:5:p:777-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.