IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v126y2021ics0378426621000510.html
   My bibliography  Save this article

Local logit regression for loan recovery rate

Author

Listed:
  • Sopitpongstorn, Nithi
  • Silvapulle, Param
  • Gao, Jiti
  • Fenech, Jean-Pierre

Abstract

This is the first paper to propose a flexible local logit regression for defaulted loan recoveries that lie in [0,1]. Via a simulation study, we demonstrate that the proposed model is robust to nonlinearity, and non-normality of errors. Applied to Moody’s dataset, the local logit model uncovers the intrinsic nonlinear relationship between loan recoveries and covariates, which include loan/borrower characteristics and economic conditions. We exploit the empirical features of the local logit model to improve the specification of the standard regression for the fractional response variable (RFRV) model, which we refer to as the calibrated-RFRV model. The estimation of the calibrated-RFRV model is more straightforward and faster than the local logit model. The overall out-of-sample predictive performance of the calibrated-RFRV is superior to the local logit, RFRV, neural network (NN), regression tree (RT) and Inverse Gaussian (IG) models. The local logit model outperforms others in quantile forecasting, showing the attractiveness of this model for estimating tail risks, the accurate estimation of which is beneficial to risk managers.

Suggested Citation

  • Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jbfina:v:126:y:2021:i:c:s0378426621000510
    DOI: 10.1016/j.jbankfin.2021.106093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426621000510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2021.106093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
    2. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2012. "Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 521-532, May.
    3. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    4. Nithi Sopitpongstorn & Param Silvapulle & Jiti Gao, 2017. "Local logit regression for recovery rate," Monash Econometrics and Business Statistics Working Papers 19/17, Monash University, Department of Econometrics and Business Statistics.
    5. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    6. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    7. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    8. Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
    9. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    10. Qi, Min & Yang, Xiaolong, 2009. "Loss given default of high loan-to-value residential mortgages," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 788-799, May.
    11. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    14. Miller, Patrick & Töws, Eugen, 2018. "Loss given default adjusted workout processes for leases," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 189-201.
    15. Kevin L. Kliesen & Douglas C. Smith, 2010. "Measuring financial market stress," Economic Synopses, Federal Reserve Bank of St. Louis.
    16. Hartmann-Wendels, Thomas & Miller, Patrick & Töws, Eugen, 2014. "Loss given default for leasing: Parametric and nonparametric estimations," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 364-375.
    17. Khieu, Hinh D. & Mullineaux, Donald J. & Yi, Ha-Chin, 2012. "The determinants of bank loan recovery rates," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 923-933.
    18. Jhao-Siang Siao & Ruey-Ching Hwang & Chih-Kang Chu, 2016. "Predicting recovery rates using logistic quantile regression with bounded outcomes," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 777-792, May.
    19. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    20. Renault, Olivier & Scaillet, Olivier, 2004. "On the way to recovery: A nonparametric bias free estimation of recovery rate densities," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2915-2931, December.
    21. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    22. Altman, Edward I. & Kalotay, Egon A., 2014. "Ultimate recovery mixtures," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 116-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Börger & Kolobe Mmonwa & Danny Campbell, 2024. "Hazardous human–wildlife encounters, risk attitudes, and the value of shark nets for coastal recreation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 925-945, March.
    2. Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
    3. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Corporate Loan Recovery Rates under Downturn Conditions in a Developing Economy: Evidence from Zimbabwe," Risks, MDPI, vol. 10(10), pages 1-24, October.
    4. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    5. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nithi Sopitpongstorn & Param Silvapulle & Jiti Gao, 2017. "Local logit regression for recovery rate," Monash Econometrics and Business Statistics Working Papers 19/17, Monash University, Department of Econometrics and Business Statistics.
    2. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    3. Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
    4. Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," Risks, MDPI, vol. 10(6), pages 1-29, June.
    5. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    6. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    7. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    8. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    9. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    10. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    11. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    12. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    13. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
    14. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
    15. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
    16. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    17. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    18. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    19. Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
    20. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.

    More about this item

    Keywords

    Loss given default; recovery prediction; nonlinearity; kernel estimation; defaulted loan;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:126:y:2021:i:c:s0378426621000510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.