IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i10p1485-1494.html
   My bibliography  Save this article

Expected shortfall estimation for apparently infinite-mean models of operational risk

Author

Listed:
  • Pasquale Cirillo
  • Nassim Nicholas Taleb

Abstract

Statistical analyses on actual data depict operational risk as an extremely heavy-tailed phenomenon, able to generate losses so extreme as to suggest the use of infinite-mean models. But no loss can actually destroy more than the entire value of a bank or of a company, and this upper bound should be considered when dealing with tail-risk assessment. Introducing what we call the dual distribution, we show how to deal with heavy-tailed phenomena with a remote yet finite upper bound. We provide methods to compute relevant tail quantities such as the Expected Shortfall, which is not available under infinite-mean models, allowing adequate provisioning and capital allocation. This also permits a measurement of fragility. The main difference between our approach and a simple truncation is in the smoothness of the transformation between the original and the dual distribution. Our methodology is useful with apparently infinite-mean phenomena, as in the case of operational risk, but it can be applied in all those situations involving extreme fat tails and bounded support.

Suggested Citation

  • Pasquale Cirillo & Nassim Nicholas Taleb, 2016. "Expected shortfall estimation for apparently infinite-mean models of operational risk," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1485-1494, October.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:10:p:1485-1494
    DOI: 10.1080/14697688.2016.1162908
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1162908
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1162908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fontanari, Andrea & Cirillo, Pasquale & Oosterlee, Cornelis W., 2018. "From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 13-29.
    2. Taleb, Nassim Nicholas & Bar-Yam, Yaneer & Cirillo, Pasquale, 2022. "On single point forecasts for fat-tailed variables," International Journal of Forecasting, Elsevier, vol. 38(2), pages 413-422.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Nassim Nicholas Taleb & Yaneer Bar-Yam & Pasquale Cirillo, 2020. "On Single Point Forecasts for Fat-Tailed Variables," Papers 2007.16096, arXiv.org.
    5. Grobys, Klaus, 2023. "Correlation versus co-fractality: Evidence from foreign-exchange-rate variances," International Review of Financial Analysis, Elsevier, vol. 86(C).
    6. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    7. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    8. Corral, Álvaro, 2024. "Moments of undersampled distributions: Application to the size of epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Nassim Nicholas Taleb, 2016. "Stochastic Tail Exponent For Asymmetric Power Laws," Papers 1609.02369, arXiv.org, revised Apr 2017.
    10. Grobys, Klaus & Dufitinema, Josephine & Sapkota, Niranjan & Kolari, James W., 2022. "What’s the expected loss when Bitcoin is under cyberattack? A fractal process analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    2. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2024. "Risk exchange under infinite-mean Pareto models," Papers 2403.20171, arXiv.org.
    3. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    4. Yuyu Chen & Taizhong Hu & Ruodu Wang & Zhenfeng Zou, 2024. "Dominance between combinations of infinite-mean Pareto random variables," Papers 2404.18467, arXiv.org.
    5. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.
    6. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    7. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    8. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    9. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    10. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    11. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    12. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    13. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    14. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    15. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    16. Claudia Ceci & Katia Colaneri & Rdiger Frey & Verena Kock, 2019. "Value adjustments and dynamic hedging of reinsurance counterparty risk," Papers 1909.04354, arXiv.org.
    17. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    18. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    19. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    20. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 126, Paderborn University, CIE Center for International Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:10:p:1485-1494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.