IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics096007792400242x.html
   My bibliography  Save this article

Moments of undersampled distributions: Application to the size of epidemics

Author

Listed:
  • Corral, Álvaro

Abstract

The total number of fatalities of an epidemic outbreak is a dramatic but extremely informative quantity. Knowledge of the statistics of this quantity allows the calculation of the mean total number of fatalities conditioned to the fact that the outbreak has surpassed a given number of fatalities, which is very relevant for risk assessment. However, the fact that the total number of fatalities seems to be characterized by a power-law tailed distribution with exponent (for the complementary cumulative distribution function) smaller than one poses an important theoretical difficulty, due to the non-existence of a mean value for such distributions. Cirillo and Taleb (2020) propose a transformation from a so-called dual variable, which displays a power-law tail, to the total number of fatalities, which becomes bounded by the total world population. Here, we (i) show that such a transformation is ad hoc and unphysical; (ii) propose alternative transformations and distributions (also ad hoc); (iii) argue that the right framework for this problem is statistical physics, through finite-size scaling; and (iv) demonstrate that the real problem is not the non-existence of the mean value for power-law tailed distributions but the fact that the tail of the different theoretical distributions (which is what distinguishes one model from the other) is far from being well sampled with the available number of empirical data. Our results are also valid for many other hazards displaying (apparent) power-law tails in their size.

Suggested Citation

  • Corral, Álvaro, 2024. "Moments of undersampled distributions: Application to the size of epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400242x
    DOI: 10.1016/j.chaos.2024.114690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400242X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corral, Álvaro, 2015. "Scaling in the timing of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 99-112.
    2. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    3. Pasquale Cirillo & Nassim Nicholas Taleb, 2016. "Expected shortfall estimation for apparently infinite-mean models of operational risk," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1485-1494, October.
    4. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, September.
    5. Álvaro Corral & Isabel Serra, 2019. "Time window to constrain the corner value of the global seismic-moment distribution," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    6. Cirillo, Pasquale & Taleb, Nassim Nicholas, 2016. "On the statistical properties and tail risk of violent conflicts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 29-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nassim Nicholas Taleb & Yaneer Bar-Yam & Pasquale Cirillo, 2020. "On Single Point Forecasts for Fat-Tailed Variables," Papers 2007.16096, arXiv.org.
    2. Nassim Nicholas Taleb, 2016. "Stochastic Tail Exponent For Asymmetric Power Laws," Papers 1609.02369, arXiv.org, revised Apr 2017.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Taleb, Nassim Nicholas & Bar-Yam, Yaneer & Cirillo, Pasquale, 2022. "On single point forecasts for fat-tailed variables," International Journal of Forecasting, Elsevier, vol. 38(2), pages 413-422.
    5. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    6. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    7. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    8. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    9. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    10. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    11. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    12. Lomi, Alessandro & Fonti, Fabio, 2012. "Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms," Economics Letters, Elsevier, vol. 114(2), pages 216-220.
    13. Zhang, Xuxi & Liu, Xianping & Lewis, Frank L. & Wang, Xia, 2020. "Bipartite tracking consensus of nonlinear multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Bing Han & Liyan Yang, 2013. "Social Networks, Information Acquisition, and Asset Prices," Management Science, INFORMS, vol. 59(6), pages 1444-1457, June.
    15. Dimitrios Karamanis, 2022. "Defence partnerships, military expenditure, investment, and economic growth: an analysis in PESCO countries," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 173, Hellenic Observatory, LSE.
    16. Levent V. Orman, 2016. "Information markets over trust networks," Electronic Commerce Research, Springer, vol. 16(4), pages 529-551, December.
    17. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    18. Pablo Galaso & Adrián Rodríguez Miranda & Sebastian Goinheix, 2018. "Local development, social capital and social network analysis: evidence from Uruguay," Revista de Estudios Regionales, Universidades Públicas de Andalucía, vol. 3, pages 137-163.
    19. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    20. Mariann Ollar & Marzena Rostek, 2011. "Information Aggregation and Innovation in Market Design," Working Papers 11-12, NET Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400242x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.