IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.18467.html
   My bibliography  Save this paper

Dominance between combinations of infinite-mean Pareto random variables

Author

Listed:
  • Yuyu Chen
  • Taizhong Hu
  • Ruodu Wang
  • Zhenfeng Zou

Abstract

We study stochastic dominance between portfolios of independent and identically distributed (iid) extremely heavy-tailed (i.e., infinite-mean) Pareto random variables. With the notion of majorization order, we show that a more diversified portfolio of iid extremely heavy-tailed Pareto random variables is larger in the sense of first-order stochastic dominance. This result is further generalized for Pareto random variables caused by triggering events, random variables with tails being Pareto, bounded Pareto random variables, and positively dependent Pareto random variables. These results provide an important implication in investment: Diversification of extremely heavy-tailed Pareto profits uniformly increases investors' profitability, leading to a diversification benefit. Remarkably, different from the finite-mean setting, such a diversification benefit does not depend on the decision maker's risk aversion.

Suggested Citation

  • Yuyu Chen & Taizhong Hu & Ruodu Wang & Zhenfeng Zou, 2024. "Dominance between combinations of infinite-mean Pareto random variables," Papers 2404.18467, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2404.18467
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.18467
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    7. Pierpaolo Andriani & Bill McKelvey, 2007. "Beyond Gaussian averages: redirecting international business and management research toward extreme events and power laws," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 38(7), pages 1212-1230, December.
    8. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2016. "Risk aggregation in multivariate dependent Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 154-163.
    9. Samuelson, Paul A., 1967. "General Proof that Diversification Pays*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(1), pages 1-13, March.
    10. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    11. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.
    2. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    3. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2024. "Risk exchange under infinite-mean Pareto models," Papers 2403.20171, arXiv.org.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    6. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    7. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    8. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    9. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    10. Muqiao Huang & Ruodu Wang, 2024. "Coherent risk measures and uniform integrability," Papers 2404.03783, arXiv.org, revised Oct 2024.
    11. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.
    12. Embrechts Paul & Wang Ruodu, 2015. "Seven Proofs for the Subadditivity of Expected Shortfall," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-15, October.
    13. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    14. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    15. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    16. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    17. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    18. Sergio Ortobelli & Svetlozar Rachev & Haim Shalit & Frank Fabozzi, 2009. "Orderings and Probability Functionals Consistent with Preferences," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 81-102.
    19. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    20. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.18467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.