IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v180y2024ics0191261524000109.html
   My bibliography  Save this article

Single-leg shipping revenue management for expedited services with ambiguous elasticity in transit-time-sensitive demand

Author

Listed:
  • Sun, Qinghe
  • Li, Wei
  • Meng, Qiang

Abstract

The growing demand for expedited shipping services from transit-time-sensitive (TTS) shippers poses a dilemma for ocean carriers, who must navigate the trade-off between transit time and the associated fuel costs. Charging a premium for expedited services offers a potential solution, but it requires careful consideration to avoid detrimental effects on demand. This study focuses on single-leg shipping revenue management (S-SRM) to optimize the pricing strategies of ocean carriers, which simplifies complex real-world phenomena, provides a concise representation of the underlying mechanism, and forms a foundation for multi-leg shipping revenue management. Specifically, the study addresses the challenge faced by ocean carriers when they possess partial prior knowledge about the distribution of shippers’ willingness to pay for expedited services on a single shipping leg. By developing a model that captures the TTS demand and accounts for uncertainties in shippers’ willingness to pay, the analysis explores various decision-making approaches under uncertainty, such as maximax, maximin, and the Hurwicz criterion. Leveraging the insights gained from the TTS demand model, the study derives closed-form solutions to optimize pricing strategies, shedding light on the intricacies of the S-SRM problem. In addition, we investigate the tramp shipping fixture and the joint optimization of sailing speed and freight rate. The practical application of the proposed model is further demonstrated through a case study of salmon transportation using a reefer vessel, highlighting its relevance in different scenarios.

Suggested Citation

  • Sun, Qinghe & Li, Wei & Meng, Qiang, 2024. "Single-leg shipping revenue management for expedited services with ambiguous elasticity in transit-time-sensitive demand," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000109
    DOI: 10.1016/j.trb.2024.102886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhilasha Prakash Katariya & Sila Cetinkaya & Eylem Tekin, 2014. "On the comparison of risk-neutral and risk-averse newsvendor problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 1090-1107, July.
    2. Chen, Rongying & Dong, Jing-Xin & Lee, Chung-Yee, 2016. "Pricing and competition in a shipping market with waste shipments and empty container repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 32-55.
    3. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    4. Shin-Chan Ting * & Gwo-Hshiung Tzeng, 2004. "An optimal containership slot allocation for liner shipping revenue management," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(3), pages 199-211, July.
    5. Michael G H Bell & Khalid Bichou, 2008. "An Analysis into Speed and Schedule Stability for Container Liner Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 175-184, March.
    6. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    7. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    8. Christos Kontovas & Harilaos N. Psaraftis, 2011. "Reduction of emissions along the maritime intermodal container chain: operational models and policies," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(4), pages 451-469, March.
    9. L.H. Lee & E.P. Chew & M.S. Sim, 2009. "A revenue management model for sea cargo," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 6(2), pages 195-222.
    10. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Containership scheduling with transit-time-sensitive container shipment demand," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 68-83.
    11. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    12. Ali Cheaitou & Pierre Cariou, 2012. "Liner shipping service optimisation with reefer containers capacity: an application to northern Europe--South America trade," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(6), pages 589-602, November.
    13. Zhou, Wei-Hua & Lee, Chung-Yee, 2009. "Pricing and competition in a transportation market with empty equipment repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 677-691, July.
    14. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    15. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    16. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    17. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    18. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    19. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    20. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    21. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    22. Meng, Qiang & Zhao, Hui & Wang, Yadong, 2019. "Revenue management for container liner shipping services: Critical review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 280-292.
    23. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    24. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    25. Jun Xia & Kevin X. Li & Hong Ma & Zhou Xu, 2015. "Joint Planning of Fleet Deployment, Speed Optimization, and Cargo Allocation for Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 922-938, November.
    26. Yadong Wang & Qiang Meng & Zhijia Tan, 2018. "Short-term liner shipping bunker procurement with swap contracts," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(2), pages 211-238, February.
    27. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    28. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    29. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    30. Wang, Xin & Fagerholt, Kjetil & Wallace, Stein W., 2018. "Planning for charters: A stochastic maritime fleet composition and deployment problem," Omega, Elsevier, vol. 79(C), pages 54-66.
    31. Guillermo Gallego, 1998. "New Bounds and Heuristics for (Q, r) Policies," Management Science, INFORMS, vol. 44(2), pages 219-233, February.
    32. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    33. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    34. Sebastian Zurheide & Kathrin Fischer, 2012. "A revenue management slot allocation model for liner shipping networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(3), pages 334-361, September.
    35. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    36. Zheng, Wei & Li, Bo & Song, Dong-Ping, 2017. "Effects of risk-aversion on competing shipping lines’ pricing strategies with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 337-356.
    37. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Qiang & Zhao, Hui & Wang, Yadong, 2019. "Revenue management for container liner shipping services: Critical review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 280-292.
    2. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    3. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    4. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    5. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    6. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    7. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    8. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    9. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    10. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    11. Olumide F. Abioye & Maxim A. Dulebenets & Junayed Pasha & Masoud Kavoosi, 2019. "A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas," Energies, MDPI, vol. 12(12), pages 1-28, June.
    12. Xin Wen & Qiong Chen & Yu-Qi Yin & Yui-yip Lau, 2023. "Green Vessel Scheduling with Weather Impact and Emission Control Area Consideration," Mathematics, MDPI, vol. 11(24), pages 1-25, December.
    13. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    14. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    15. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    16. Wang, Shuaian & Wang, Xinchang, 2016. "A polynomial-time algorithm for sailing speed optimization with containership resource sharing," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 394-405.
    17. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    18. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    19. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    20. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.