IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i1d10.1057_jors.2009.169.html
   My bibliography  Save this article

The effect of oil price on containership speed and fleet size

Author

Listed:
  • D Ronen

    (College of Business Administration, University of Missouri– St Louis)

Abstract

The changing prices of bunker fuel open the door for substantial cost savings by adjusting the sailing speed of ships. A large ship may be burning up to 100 000 USD of bunker fuel per day, which may constitute more than 75% of its operating costs. Reducing the cruising speed by 20% reduces daily bunker consumption by 50%. However, in order to maintain liner service frequency and capacity, reducing the cruising speed may require additional ships to operate a route. We construct a cost model that we use to analyse the trade-off between speed reduction and adding vessels to a container line route, and devise a simple procedure to identify the sailing speed and number of vessels that minimize the annual operating cost of the route. Using published data, we demonstrate the potential for large-cost savings when one operates close to the minimal-cost speed. The presented methodology and procedure are applicable for any bunker fuel price.

Suggested Citation

  • D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.169
    DOI: 10.1057/jors.2009.169
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.169
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Theo Notteboom & Jean-Paul Rodrigue, 2008. "Containerisation, Box Logistics and Global Supply Chains: The Integration of Ports and Liner Shipping Networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 152-174, March.
    2. Shih-Chan Ting & Gwo-Hshiung Tzeng, 2003. "Ship Scheduling and Cost Analysis for Route Planning in Liner Shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 5(4), pages 378-392, December.
    3. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    4. Bert Vernimmen & Wout Dullaert & Steve Engelen, 2007. "Schedule Unreliability in Liner Shipping: Origins and Consequences for the Hinterland Supply Chain," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 9(3), pages 193-213, September.
    5. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    6. Gerald G. Brown & Jeffrey E. Kline & Richard E. Rosenthal & Alan R. Washburn, 2007. "Steaming on Convex Hulls," Interfaces, INFORMS, vol. 37(4), pages 342-352, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    2. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    3. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    4. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    5. Dawn Russell & Kusumal Ruamsook & Violeta Roso, 2022. "Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 92-113, March.
    6. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    7. Kevin Tierney & Jan Fabian Ehmke & Ann Melissa Campbell & Daniel Müller, 2019. "Liner shipping single service design problem with arrival time service levels," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 620-652, September.
    8. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    9. Christian Finnsgård & Joakim Kalantari & Zeeshan Raza & Violeta Roso & Johan Woxenius, 2018. "Swedish shippers’ strategies for coping with slow-steaming in deep sea container shipping," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-24, December.
    10. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    11. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    12. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    13. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    14. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2017. "Optimization in liner shipping," 4OR, Springer, vol. 15(1), pages 1-35, March.
    15. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.
    16. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    17. Xin Wen & Qiong Chen & Yu-Qi Yin & Yui-yip Lau, 2023. "Green Vessel Scheduling with Weather Impact and Emission Control Area Consideration," Mathematics, MDPI, vol. 11(24), pages 1-25, December.
    18. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    19. Jan Hoffmann & Naima Saeed & Sigbjørn Sødal, 2020. "Liner shipping bilateral connectivity and its impact on South Africa’s bilateral trade flows," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 473-499, September.
    20. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:1:d:10.1057_jors.2009.169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.