IDEAS home Printed from https://ideas.repec.org/a/taf/jpropr/v28y2011i3p213-232.html
   My bibliography  Save this article

Long memory in REIT volatility revisited: genuine or spurious, and self-similar?

Author

Listed:
  • Jian Zhou

Abstract

This paper revisits the Real Estate Investment Trust (REIT) long-memory literature and addresses two important research questions: one, whether the observed long memory in REIT volatility is genuine or spurious (that is, caused by structural changes); and, two, a related one -- whether the long memory is self-similar. Regarding the first question, we find strong evidence for the coexistence of pure long memory and structural breaks in all developed countries under study when daily data are used. But for the emerging markets under study some show coexistence while others show only pure long memory. Such a finding is also shared by both developed and emerging markets when it comes to using lower frequency data (weekly and monthly). As for the second question, we find support for self-similarity when we compare the daily and weekly long-memory estimates for the developed markets, implying that long memory is an intrinsic feature of the data. However, the support is not strong enough to completely rule out the possibility of structural breaks. Moreover, the support is found reduced when we consider the emerging markets and the monthly estimates from the developed markets. This is possibly due to the small sample size in both cases. Overall our findings have important implications for volatility modeling and forecasting.

Suggested Citation

  • Jian Zhou, 2011. "Long memory in REIT volatility revisited: genuine or spurious, and self-similar?," Journal of Property Research, Taylor & Francis Journals, vol. 28(3), pages 213-232, January.
  • Handle: RePEc:taf:jpropr:v:28:y:2011:i:3:p:213-232
    DOI: 10.1080/09599916.2011.577903
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09599916.2011.577903
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09599916.2011.577903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Beine & Sebastien Laurent, 2000. "Structural Change and Long Memory in Volatility: New Evidence from Daily Exchange Rates," Econometric Society World Congress 2000 Contributed Papers 0312, Econometric Society.
    2. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alia Afzal & Philipp Sibbertsen, 2023. "Long Memory, Spurious Memory: Persistence in Range-Based Volatility of Exchange Rates," Open Economies Review, Springer, vol. 34(4), pages 789-811, September.
    2. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    3. Ivelina Pavlova & Jang Hyung Cho & A.M. Parhizgari & William G. Hardin, 2014. "Long memory in REIT volatility and changes in the unconditional mean: a modified FIGARCH approach," Journal of Property Research, Taylor & Francis Journals, vol. 31(4), pages 315-332, December.
    4. Oluwasegun B. Adekoya & Gabriel O. Oduyemi & Johnson A. Oliyide, 2021. "Price and volatility persistence of the US REITs market," Future Business Journal, Springer, vol. 7(1), pages 1-10, December.
    5. Assaf, Ata, 2015. "Long memory and level shifts in REITs returns and volatility," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 172-182.
    6. Patrick Krieger & Carsten Lausberg & Kristin Wellner, 2018. "Einblicke in die Gründe für nicht-normalverteilte Immobilienrenditen: eine explorative Untersuchung deutscher Wohnimmobilienportfolios [Insights into the reasons for non-normal real estate returns:," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 4(1), pages 49-79, November.
    7. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Forecasting realized volatility of international REITs: The role of realized skewness and realized kurtosis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 303-315, March.
    8. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2020. "Uncertainty due to Infectious Diseases and Forecastability of the Realized Variance of US REITs: A Note," Working Papers 202099, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    2. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    3. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    4. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    5. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    6. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    7. Manley, Bruce & Niquidet, Kurt, 2017. "How does real option value compare with Faustmann value when log prices follow fractional Brownian motion?," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 76-84.
    8. Claudio Morana & Andrea Beltratti, 2006. "Structural breaks and common factors in the volatility of the Fama-French factor portfolios," Applied Financial Economics, Taylor & Francis Journals, vol. 16(14), pages 1059-1073.
    9. Yohei Yamamoto & Pierre Perron, 2013. "Estimating and testing multiple structural changes in linear models using band spectral regressions," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 400-429, October.
    10. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    11. Morana, Claudio, 2009. "On the macroeconomic causes of exchange rate volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 328-350.
    12. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    13. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    14. Sylvain Prado, 2011. "Free lunch in the oil market: a note on Long Memory," EconomiX Working Papers 2011-23, University of Paris Nanterre, EconomiX.
    15. G. J. Power & C. Turvey, 2011. "What explains long memory in futures price volatility?," Applied Economics, Taylor & Francis Journals, vol. 43(24), pages 3395-3404.
    16. Richard T. Baille & Claudio Morana, 2009. "Investigating Inflation Dynamics and Structural Change with an Adaptive ARFIMA Approach," ICER Working Papers - Applied Mathematics Series 06-2009, ICER - International Centre for Economic Research.
    17. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    18. Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018. "Generating univariate fractional integration within a large VAR(1)," Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
    19. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    20. Rehim Kilic, 2011. "A conditional variance tale from an emerging economy's freely floating exchange rate," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2465-2480.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jpropr:v:28:y:2011:i:3:p:213-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RJPR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.