IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04140982.html
   My bibliography  Save this paper

Free lunch in the oil market: a note on Long Memory

Author

Listed:
  • Sylvain Prado

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

In the crude oil market the phenomenon of Long Memory can be easily identified with the help of the simple (but effective) methodology of Katsumi Shimotsu. The Exact Local Whittle estimator and two testing strategies provide a strong assessment of the phenomenon. We present evidences and we suggest a profit opportunity. Furthermore, the existence of Long Memory discloses an inefficient oil market.

Suggested Citation

  • Sylvain Prado, 2011. "Free lunch in the oil market: a note on Long Memory," Working Papers hal-04140982, HAL.
  • Handle: RePEc:hal:wpaper:hal-04140982
    Note: View the original document on HAL open archive server: https://hal.science/hal-04140982
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04140982/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    2. Leïla Nouira & Ibrahim Ahamada & Jamel Jouini & Alain Nurbel, 2004. "Long memory and shifts in the unconditional variance in the exchange rate euro/us dollar returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00272871, HAL.
    3. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    4. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    5. Korkmaz, Turhan & Cevik, Emrah Ismail & Özataç, Nesrin, 2009. "Testing for long memory in ISE using Arfima-Figarch model and structural break test," MPRA Paper 71302, University Library of Munich, Germany.
    6. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    7. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    8. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    9. Leila Nouira & Ibrahim Ahamada & Jamel Jouini & Alain Nurbel, 2004. "Long-memory and shifts in the unconditional variance in the exchange rate euro/US dollar returns," Applied Economics Letters, Taylor & Francis Journals, vol. 11(9), pages 591-594.
    10. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    2. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    3. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    4. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    5. John Francis Diaz & Jo-Hui Chen, 2017. "Testing for Long-memory and Chaos in the Returns of Currency Exchange-traded Notes (ETNs)," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(4), pages 1-2.
    6. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    7. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    8. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2022. "Dynamic volatility connectedness between thermal coal futures and major cryptocurrencies: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    9. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    10. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    11. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    12. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    13. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    14. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    15. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Saki Kawakubo & Kiyoshi Izumi & Shinobu Yoshimura, 2014. "Analysis Of An Option Market Dynamics Based On A Heterogeneous Agent Model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(2), pages 105-128, April.
    17. Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.
    18. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    19. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    20. Claudio Morana, 2014. "New insights on the US OIS spreads term structure during the recent financial turmoil," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 291-317, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04140982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.