IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i511p1013-1023.html
   My bibliography  Save this article

Robust Estimation of Inverse Probability Weights for Marginal Structural Models

Author

Listed:
  • Kosuke Imai
  • Marc Ratkovic

Abstract

Marginal structural models (MSMs) are becoming increasingly popular as a tool for causal inference from longitudinal data. Unlike standard regression models, MSMs can adjust for time-dependent observed confounders while avoiding the bias due to the direct adjustment for covariates affected by the treatment. Despite their theoretical appeal, a main practical difficulty of MSMs is the required estimation of inverse probability weights. Previous studies have found that MSMs can be highly sensitive to misspecification of treatment assignment model even when the number of time periods is moderate. To address this problem, we generalize the covariate balancing propensity score (CBPS) methodology of Imai and Ratkovic to longitudinal analysis settings. The CBPS estimates the inverse probability weights such that the resulting covariate balance is improved. Unlike the standard approach, the proposed methodology incorporates all covariate balancing conditions across multiple time periods. Since the number of these conditions grows exponentially as the number of time period increases, we also propose a low-rank approximation to ease the computational burden. Our simulation and empirical studies suggest that the CBPS significantly improves the empirical performance of MSMs by making the treatment assignment model more robust to misspecification. Open-source software is available for implementing the proposed methods.

Suggested Citation

  • Kosuke Imai & Marc Ratkovic, 2015. "Robust Estimation of Inverse Probability Weights for Marginal Structural Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1013-1023, September.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1013-1023
    DOI: 10.1080/01621459.2014.956872
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.956872
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.956872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    3. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    4. Keisuke Hirano & Jack R. Porter, 2003. "Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support," Econometrica, Econometric Society, vol. 71(5), pages 1307-1338, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kallus Nathan & Santacatterina Michele, 2021. "Optimal balancing of time-dependent confounders for marginal structural models," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 345-369, January.
    2. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    3. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    4. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    5. Vahe Avagyan & Stijn Vansteelandt, 2021. "Stable inverse probability weighting estimation for longitudinal studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1046-1067, September.
    6. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    7. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    8. Sean Yiu & Li Su, 2022. "Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models," Biometrics, The International Biometric Society, vol. 78(1), pages 115-127, March.
    9. Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
    10. Sean Yiu & Li Su, 2018. "Covariate association eliminating weights: a unified weighting framework for causal effect estimation," Biometrika, Biometrika Trust, vol. 105(3), pages 709-722.
    11. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    12. Soojin Park & Peter M. Steiner & David Kaplan, 2018. "Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 298-320, June.
    13. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    14. Eva Wolfschuetz, 2020. "The Effect of Inter-municipal Cooperation on Local Business Development in German Municipalities," MAGKS Papers on Economics 202005, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Guo, Donglin & Xue, Liugen & Hu, Yuqin, 2017. "Covariate-balancing-propensity-score-based inference for linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 139-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
    2. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    3. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    4. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    5. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    6. Fan, Yanqin & Shi, Xuetao & Tao, Jing, 2023. "Partial identification and inference in moment models with incomplete data," Journal of Econometrics, Elsevier, vol. 235(2), pages 418-443.
    7. Marianne BLÉHAUT & Xavier D'HAULTFOEUILLE & Jérémy L'HOUR & Alexandre B. TSYBAKOV, 2020. "An alternative to synthetic control for models with many covariates under sparsity," Working Papers 2020-17, Center for Research in Economics and Statistics.
    8. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    9. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    10. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    12. Knaus, Michael C. & Lechner, Michael & Reimers, Anne K., 2020. "For better or worse? – The effects of physical education on child development," Labour Economics, Elsevier, vol. 67(C).
    13. Gong, Aibo & Ke, Shaowei & Qiu, Yawen & Shen, Rui, 2022. "Robust pricing under strategic trading," Journal of Economic Theory, Elsevier, vol. 199(C).
    14. Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," American Economic Review, American Economic Association, vol. 107(5), pages 278-281, May.
    15. Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
    16. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    17. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    18. Jia, Jing & Li, Zhongtian, 2022. "Risk management committees and readability of risk management disclosure," Journal of Contemporary Accounting and Economics, Elsevier, vol. 18(3).
    19. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    20. Sean Yiu & Li Su, 2022. "Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models," Biometrics, The International Biometric Society, vol. 78(1), pages 115-127, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1013-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.