IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v9y2021i1p345-369n8.html
   My bibliography  Save this article

Optimal balancing of time-dependent confounders for marginal structural models

Author

Listed:
  • Kallus Nathan

    (Department of Operations Research and Information Engineering and Cornell Tech, Cornell University, New York 10044, New York, USA)

  • Santacatterina Michele

    (Department of Population Health, New York University Grossman School of Medicine, New York 10016, New York, USA)

Abstract

Marginal structural models (MSMs) can be used to estimate the causal effect of a potentially time-varying treatment in the presence of time-dependent confounding via weighted regression. The standard approach of using inverse probability of treatment weighting (IPTW) can be sensitive to model misspecification and lead to high-variance estimates due to extreme weights. Various methods have been proposed to partially address this, including covariate balancing propensity score (CBPS) to mitigate treatment model misspecification, and truncation and stabilized-IPTW (sIPTW) to temper extreme weights. In this article, we present kernel optimal weighting (KOW), a convex-optimization-based approach that finds weights for fitting the MSMs that flexibly balance time-dependent confounders while simultaneously penalizing extreme weights, directly addressing the above limitations. We further extend KOW to control for informative censoring. We evaluate the performance of KOW in a simulation study, comparing it with IPTW, sIPTW, and CBPS. We demonstrate the use of KOW in studying the effect of treatment initiation on time-to-death among people living with human immunodeficiency virus and the effect of negative advertising on elections in the United States.

Suggested Citation

  • Kallus Nathan & Santacatterina Michele, 2021. "Optimal balancing of time-dependent confounders for marginal structural models," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 345-369, January.
  • Handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:345-369:n:8
    DOI: 10.1515/jci-2020-0033
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2020-0033
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2020-0033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    2. José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
    3. Kosuke Imai & Marc Ratkovic, 2015. "Robust Estimation of Inverse Probability Weights for Marginal Structural Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1013-1023, September.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    5. van der Wal, Willem M. & Geskus, Ronald B., 2011. "ipw: An R Package for Inverse Probability Weighting," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i13).
    6. Michele Santacatterina & Matteo Bottai, 2018. "Optimal Probability Weights for Inference With Constrained Precision," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 983-991, July.
    7. Hernan M. A & Brumback B. & Robins J. M, 2001. "Marginal Structural Models to Estimate the Joint Causal Effect of Nonrandomized Treatments," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 440-448, June.
    8. Matthew Blackwell, 2013. "A Framework for Dynamic Causal Inference in Political Science," American Journal of Political Science, John Wiley & Sons, vol. 57(2), pages 504-520, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Vahe Avagyan & Stijn Vansteelandt, 2021. "Stable inverse probability weighting estimation for longitudinal studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1046-1067, September.
    4. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    5. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    6. Dmitry Arkhangelsky & Guido W. Imbens, 2019. "Doubly Robust Identification for Causal Panel Data Models," Papers 1909.09412, arXiv.org, revised Feb 2022.
    7. Soojin Park & Peter M. Steiner & David Kaplan, 2018. "Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 298-320, June.
    8. María de los Angeles Resa & José R. Zubizarreta, 2020. "Direct and stable weight adjustment in non‐experimental studies with multivalued treatments: analysis of the effect of an earthquake on post‐traumatic stress," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1387-1410, October.
    9. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    10. Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
    11. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    12. Brett R. Gordon & Florian Zettelmeyer & Neha Bhargava & Dan Chapsky, 2019. "A Comparison of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook," Marketing Science, INFORMS, vol. 38(2), pages 193-225, March.
    13. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    14. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    15. Sean Yiu & Li Su, 2022. "Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models," Biometrics, The International Biometric Society, vol. 78(1), pages 115-127, March.
    16. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    17. Sean Yiu & Li Su, 2018. "Covariate association eliminating weights: a unified weighting framework for causal effect estimation," Biometrika, Biometrika Trust, vol. 105(3), pages 709-722.
    18. Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
    19. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    20. Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:345-369:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.