IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i1p377-399.html
   My bibliography  Save this article

Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising

Author

Listed:
  • Matthew Blackwell
  • Anton Strezhnev

Abstract

Time‐varying treatments are prevalent in the social sciences. For example, a political campaign might decide to air attack ads against an opponent, but this decision to go negative will impact polling and, thus, future campaign strategy. If an analyst naively applies methods for point exposures to estimate the effect of earlier treatments, this would lead to post‐treatment bias. Several existing methods can adjust for this type of time‐varying confounding, but they typically rely on strong modelling assumptions. In this paper, we propose a novel two‐step matching procedure for estimating the effect of two‐period treatments. This method, telescope matching, reduces model dependence without inducing post‐treatment bias by using matching with replacement to impute missing counterfactual outcomes. It then employs flexible regression models to correct for bias induced by imperfect matches. We derive the asymptotic properties of the telescope matching estimator and provide a consistent estimator for its variance. We illustrate telescope matching by investigating the effect of negative campaigning in US Senate and gubernatorial elections. Using the method, we uncover a positive effect on turnout of negative ads early in a campaign and a negative effect of early negativity on vote shares.

Suggested Citation

  • Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:1:p:377-399
    DOI: 10.1111/rssa.12759
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12759
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Huber & Michael Lechner & Anthony Strittmatter, 2018. "Direct and indirect effects of training vouchers for the unemployed," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(2), pages 441-463, February.
    2. Murphy S.A. & van der Laan M.J. & Robins J.M., 2001. "Marginal Mean Models for Dynamic Regimes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1410-1423, December.
    3. James Robins & Andrea Rotnitzky, 2004. "Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models," Biometrika, Biometrika Trust, vol. 91(4), pages 763-783, December.
    4. Alberto Abadie & Guido W. Imbens, 2016. "Matching on the Estimated Propensity Score," Econometrica, Econometric Society, vol. 84, pages 781-807, March.
    5. Sylvie Goetgeluk & Stijn Vansteelandt & Els Goetghebeur, 2008. "Estimation of controlled direct effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1049-1066, November.
    6. Gerber, Alan S. & Gimpel, James G. & Green, Donald P. & Shaw, Daron R., 2011. "How Large and Long-lasting Are the Persuasive Effects of Televised Campaign Ads? Results from a Randomized Field Experiment," American Political Science Review, Cambridge University Press, vol. 105(1), pages 135-150, February.
    7. Alberto Abadie & Guido W. Imbens, 2012. "A Martingale Representation for Matching Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 833-843, June.
    8. Michael Lechner & Ruth Miquel, 2010. "Identification of the effects of dynamic treatments by sequential conditional independence assumptions," Empirical Economics, Springer, vol. 39(1), pages 111-137, August.
    9. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    10. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    11. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    12. Taisuke Otsu & Yoshiyasu Rai, 2017. "Bootstrap Inference of Matching Estimators for Average Treatment Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1720-1732, October.
    13. Kosuke Imai & Marc Ratkovic, 2015. "Robust Estimation of Inverse Probability Weights for Marginal Structural Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1013-1023, September.
    14. Michael Lechner, 2004. "Sequential Matching Estimation of Dynamic Causal Models," University of St. Gallen Department of Economics working paper series 2004 2004-06, Department of Economics, University of St. Gallen.
    15. King, Gary & Nielsen, Richard, 2019. "Why Propensity Scores Should Not Be Used for Matching," Political Analysis, Cambridge University Press, vol. 27(4), pages 435-454, October.
    16. Stijn Vansteelandt, 2010. "Estimation of controlled direct effects on a dichotomous outcome using logistic structural direct effect models," Biometrika, Biometrika Trust, vol. 97(4), pages 921-934.
    17. van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.
    18. Matthew Blackwell, 2013. "A Framework for Dynamic Causal Inference in Political Science," American Journal of Political Science, John Wiley & Sons, vol. 57(2), pages 504-520, April.
    19. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    20. Gruber Susan & van der Laan Mark J., 2012. "Targeted Minimum Loss Based Estimation of a Causal Effect on an Outcome with Known Conditional Bounds," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.
    2. Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2024. "Nonparametric bootstrap for propensity score matching estimators," Statistics & Probability Letters, Elsevier, vol. 208(C).
    3. Michael Lechner & Ruth Miquel & Conny Wunsch, 2011. "Long‐Run Effects Of Public Sector Sponsored Training In West Germany," Journal of the European Economic Association, European Economic Association, vol. 9(4), pages 742-784, August.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    6. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    7. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    8. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    9. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    10. Huber, Martin & Camponovo, Lorenzo & Bodory, Hugo & Lechner, Michael, 2016. "A wild bootstrap algorithm for propensity score matching estimators," FSES Working Papers 470, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Zhexiao Lin & Peng Ding & Fang Han, 2021. "Estimation based on nearest neighbor matching: from density ratio to average treatment effect," Papers 2112.13506, arXiv.org.
    12. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    13. Andr'es Ram'irez-Hassan & Raquel Vargas-Correa & Gustavo Garc'ia & Daniel Londo~no, 2020. "Optimal selection of the number of control units in kNN algorithm to estimate average treatment effects," Papers 2008.06564, arXiv.org.
    14. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    15. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    16. Radice Rosalba & Ramsahai Roland & Grieve Richard & Kreif Noemi & Sadique Zia & Sekhon Jasjeet S., 2012. "Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-45, August.
    17. Seonho Shin, 2022. "Evaluating the Effect of the Matching Grant Program for Refugees: An Observational Study Using Matching, Weighting, and the Mantel-Haenszel Test," Journal of Labor Research, Springer, vol. 43(1), pages 103-133, March.
    18. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    20. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:1:p:377-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.