IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1319.html
   My bibliography  Save this paper

Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators

Author

Listed:
  • BROZE, Laurence
  • GOURIEROUX, Christian

Abstract

No abstract is available for this item.

Suggested Citation

  • BROZE, Laurence & GOURIEROUX, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," LIDAM Reprints CORE 1319, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1319
    DOI: 10.1016/S0304-4076(97)00095-X
    Note: In : Journal of Econometrics, 85, 75-98, 1998
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. BROZE, Laurence & GOURIEROUX , Christian, 1993. "Covariance Estimators and Adjusted Pseudo Maximum Likelihood Method," LIDAM Discussion Papers CORE 1993013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    5. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    6. repec:cdl:ucsbec:3-95 is not listed on IDEAS
    7. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    2. Gouriéroux, Christian, 1994. "Modèles économétriques : utilisation et interprétation (les)," CEPREMAP Working Papers (Couverture Orange) 9423, CEPREMAP.
    3. Bekaert, Geert & Harvey, Campbell R., 1997. "Emerging equity market volatility," Journal of Financial Economics, Elsevier, vol. 43(1), pages 29-77, January.
    4. Calzolari, Giorgio & Fiorentini, Gabriele & Panattoni, Lorenzo, 1993. "Alternative estimators of the covariance matrix in GARCH models," MPRA Paper 24433, University Library of Munich, Germany.
    5. Antoine, Bertille & Dovonon, Prosper, 2021. "Robust estimation with exponentially tilted Hellinger distance," Journal of Econometrics, Elsevier, vol. 224(2), pages 330-344.
    6. Calzolari, Giorgio, 1992. "Stima delle equazioni simultanee non-lineari: una rassegna [Estimation of nonlinear simultaneous equations: a survey]," MPRA Paper 24123, University Library of Munich, Germany, revised 1992.
    7. Bekaert, Geert & Harvey, Campbell R, 1995. "Time-Varying World Market Integration," Journal of Finance, American Finance Association, vol. 50(2), pages 403-444, June.
    8. Daniel Ventosa, "undated". "A proposal for a new specification for a conditionally heteroskedastic variance model: the Quadratic Moving-Average Conditional Heteroskedasticity and an application to the D. Mark-U.S. dollar Exchang," UFAE and IAE Working Papers 513.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    9. Holly, Alberto & Monfort, Alain & Rockinger, Michael, 2011. "Fourth order pseudo maximum likelihood methods," Journal of Econometrics, Elsevier, vol. 162(2), pages 278-293, June.
    10. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    11. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    12. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    13. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    14. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    15. Galindo, Luis M., 1995. "La hipótesis de expectativas en el mercado de Cetes en México," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 10(1), pages 67-88.
    16. León-González, Roberto & Montolio, Daniel, 2015. "Endogeneity and panel data in growth regressions: A Bayesian model averaging approach," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 23-39.
    17. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    18. Kriwoluzky, Alexander, 2008. "Matching theory and data: Bayesian vector autoregression and dynamic stochastic general equilibrium models," SFB 649 Discussion Papers 2008-060, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    20. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.