IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v213y2019i2p593-607.html
   My bibliography  Save this article

Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models

Author

Listed:
  • Zhou, Ling
  • Lin, Huazhen
  • Chen, Kani
  • Liang, Hua

Abstract

The efficiency of estimation for the parameters in semiparametric models has been widely studied in the literature (Bickel et al., 1993). In this paper, we study efficient estimators for both parameters and nonparametric functions in a class of generalized semi/non-parametric regression models, which cover commonly used semiparametric models such as partially linear models, partially linear single index models, and two-sample semiparametric models. We propose a maximum likelihood principle combined with the local linear technique for estimating the parameters and nonparametric functions. The proposed estimators of the parameters and a linear functional of the nonparametric functions are consistent and asymptotically normal and are further shown to be semiparametrically efficient. An efficient computational algorithm to achieve the maximization is proposed. Extensive simulation experiments show the superiority of the proposed methods. Three real data examples are analyzed and presented as an illustration.

Suggested Citation

  • Zhou, Ling & Lin, Huazhen & Chen, Kani & Liang, Hua, 2019. "Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models," Journal of Econometrics, Elsevier, vol. 213(2), pages 593-607.
  • Handle: RePEc:eee:econom:v:213:y:2019:i:2:p:593-607
    DOI: 10.1016/j.jeconom.2019.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619301642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    2. Carrasco, Marine & Florens, Jean-Pierre, 2014. "On The Asymptotic Efficiency Of Gmm," Econometric Theory, Cambridge University Press, vol. 30(2), pages 372-406, April.
    3. Maity, Arnab & Ma, Yanyuan & Carroll, Raymond J., 2007. "Efficient Estimation of Population-Level Summaries in General Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 123-139, March.
    4. Bryan W. Brown & Whitney K. Newey, 1998. "Efficient Semiparametric Estimation of Expectations," Econometrica, Econometric Society, vol. 66(2), pages 453-464, March.
    5. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    6. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    7. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    8. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    9. Heng Lian & Hua Liang & Raymond J. Carroll, 2015. "Variance function partially linear single-index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 171-194, January.
    10. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    11. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    12. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    13. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    14. Yingcun Xia, 2004. "Efficient estimation for semivarying-coefficient models," Biometrika, Biometrika Trust, vol. 91(3), pages 661-681, September.
    15. A. Yatchew, 2000. "Scale economies in electricity distribution: a semiparametric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 187-210.
    16. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    17. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    18. Yanyuan Ma & Jeng-Min Chiou & Naisyin Wang, 2006. "Efficient semiparametric estimator for heteroscedastic partially linear models," Biometrika, Biometrika Trust, vol. 93(1), pages 75-84, March.
    19. Kong, Efang & Xia, Yingcun, 2012. "A Single-Index Quantile Regression Model And Its Estimation," Econometric Theory, Cambridge University Press, vol. 28(4), pages 730-768, August.
    20. Härdle, W. & Marron, S.J., 1990. "Semiparametric comparison of regression curves," LIDAM Reprints CORE 890, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    22. Härdle, Wolfgang, 1989. "Asymptotic maximal deviation of M-smoothers," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 163-179, May.
    23. Shuzhuan Zheng & Lijian Yang & Wolfgang K. Härdle, 2014. "A Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 661-673, June.
    24. Shujie Ma & Peter X.-K. Song, 2015. "Varying Index Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 341-356, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jun & Lin, Bingqing & Zhou, Yan, 2021. "Kernel density estimation for partial linear multivariate responses models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Han, Jinyue & Wang, Jun & Gao, Wei & Tang, Man-Lai, 2023. "Estimation of the directions for unknown parameters in semiparametric models," MPRA Paper 116365, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixin Fang & Heng Lian & Hua Liang, 2018. "A generalized partially linear framework for variance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1147-1175, October.
    2. Chen, Xiaohong & Pouzo, Demian & Powell, James L., 2019. "Penalized sieve GEL for weighted average derivatives of nonparametric quantile IV regressions," Journal of Econometrics, Elsevier, vol. 213(1), pages 30-53.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    5. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    6. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    7. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    8. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
    9. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    10. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    11. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    12. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    13. Severini, Thomas A. & Tripathi, Gautam, 2012. "Efficiency bounds for estimating linear functionals of nonparametric regression models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 491-498.
    14. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    15. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    16. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    17. Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
    18. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    19. repec:hum:wpaper:sfb649dp2014-043 is not listed on IDEAS
    20. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    21. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.

    More about this item

    Keywords

    Local linear method; Maximum likelihood function; Profile likelihood; Semiparametric efficiency; Semi/non-parametric regression models; Undersmoothing;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:213:y:2019:i:2:p:593-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.