IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i508p1672-1682.html
   My bibliography  Save this article

Generalized Ordinary Differential Equation Models

Author

Listed:
  • Hongyu Miao
  • Hulin Wu
  • Hongqi Xue

Abstract

Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. Supplementary materials for this article are available online.

Suggested Citation

  • Hongyu Miao & Hulin Wu & Hongqi Xue, 2014. "Generalized Ordinary Differential Equation Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1672-1682, December.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1672-1682
    DOI: 10.1080/01621459.2014.957287
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.957287
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.957287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo-Cheng Wei & Jian-Qing Shi & Wing-Kam Fung & Yue-Qing Hu, 1998. "Testing for Varying Dispersion in Exponential Family Nonlinear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 277-294, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Xuming Tong & Jinghang Chen & Hongyu Miao & Tingting Li & Le Zhang, 2015. "Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
    3. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2017. "Estimating varying coefficients for partial differential equation models," Biometrics, The International Biometric Society, vol. 73(3), pages 949-959, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    2. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    3. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2010. "Testing for varying zero-inflation and dispersion in generalized Poisson regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1509-1522.
    4. Mariana C. Araújo & Audrey H. M. A. Cysneiros & Lourdes C. Montenegro, 2020. "Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models," Statistical Papers, Springer, vol. 61(1), pages 167-188, February.
    5. Chun-Zheng Cao & Jin-Guan Lin & Li-Xing Zhu, 2010. "Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors," Statistical Papers, Springer, vol. 51(4), pages 813-836, December.
    6. Omerovic, Sanela & Friedl, Herwig & Grün, Bettina, 2022. "Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models," Econometrics and Statistics, Elsevier, vol. 22(C), pages 124-135.
    7. Crudu, Federico & Osorio, Felipe, 2020. "Bilinear form test statistics for extremum estimation," Economics Letters, Elsevier, vol. 187(C).
    8. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    9. Luigi Augugliaro & Angelo M. Mineo & Ernst C. Wit, 2013. "Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 471-498, June.
    10. Jin-Guan Lin & Li-Xing Zhu & Feng-Chang Xie, 2009. "Heteroscedasticity diagnostics for t linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 59-77, June.
    11. Jin-Guan Lin & Li-Xing Zhu & Chun-Zheng Cao & Yong Li, 2011. "Tests of heteroscedasticity and correlation in multivariate t regression models with AR and ARMA errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1509-1531, August.
    12. Ferrari, Silvia L.P. & Cysneiros, Audrey H.M.A., 2008. "Skovgaard's adjustment to likelihood ratio tests in exponential family nonlinear models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3047-3055, December.
    13. Artur J. Lemonte & Alexandre G. Patriota, 2011. "Influence diagnostics in Birnbaum--Saunders nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 871-884, February.
    14. Feng-Chang Xie & Bo-Cheng Wei & Jin-Guan Lin, 2007. "Case-deletion Influence Measures for the Data from Multivariate t Distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(8), pages 907-921.
    15. Vanegas, Luis Hernando & Rondón, Luz Marina & Cysneiros, Francisco José A., 2012. "Diagnostic procedures in Birnbaum–Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1662-1680.
    16. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    17. Cysneiros, Audrey H.M.A. & Ferrari, Silvia L.P., 2006. "An improved likelihood ratio test for varying dispersion in exponential family nonlinear models," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 255-265, February.
    18. Jin-Guan Lin & Yan-Yong Zhao & Hong-Xia Wang, 2015. "Heteroscedasticity diagnostics in varying-coefficient partially linear regression models and applications in analyzing Boston housing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2432-2448, November.
    19. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    20. Zhao, Weihua & Zhang, Riquan & Huang, Zhensheng & Feng, Jingyan, 2012. "Partially linear single-index beta regression model and score test," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 116-123, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1672-1682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.