IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141295.html
   My bibliography  Save this article

Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

Author

Listed:
  • Xuming Tong
  • Jinghang Chen
  • Hongyu Miao
  • Tingting Li
  • Le Zhang

Abstract

Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.

Suggested Citation

  • Xuming Tong & Jinghang Chen & Hongyu Miao & Tingting Li & Le Zhang, 2015. "Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0141295
    DOI: 10.1371/journal.pone.0141295
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141295
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141295&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    2. Hongyu Miao & Hulin Wu & Hongqi Xue, 2014. "Generalized Ordinary Differential Equation Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1672-1682, December.
    3. Hongyu Miao & Carrie Dykes & Lisa M. Demeter & Hulin Wu, 2009. "Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multimodel Inference," Biometrics, The International Biometric Society, vol. 65(1), pages 292-300, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    2. Florian Heiss, 2016. "Discrete Choice Methods with Simulation," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 688-692, April.
    3. Sándor Zsolt, 2013. "Monte Carlo Simulation in Random Coefficient Logit Models Involving Large Sums," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 1(1), pages 85-108, July.
    4. Matthew Gentzkow & Jesse M. Shapiro & Michael Sinkinson, 2014. "Competition and Ideological Diversity: Historical Evidence from US Newspapers," American Economic Review, American Economic Association, vol. 104(10), pages 3073-3114, October.
    5. Franco Peracchi & Claudio Rossetti, 2022. "A nonlinear dynamic factor model of health and medical treatment," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1046-1066, June.
    6. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    7. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    8. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    10. Gaurav Khemka & Adam Butt, 2017. "Non-Parametric Integral Estimation Using Data Clustering in Stochastic dynamic Programming: An Introduction Using Lifetime Financial Modelling," Risks, MDPI, vol. 5(4), pages 1-17, October.
    11. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    12. Michael Chen & Sanjay Mehrotra & Dávid Papp, 2015. "Scenario generation for stochastic optimization problems via the sparse grid method," Computational Optimization and Applications, Springer, vol. 62(3), pages 669-692, December.
    13. Li, Luxin & Chen, Guohai & Fang, Mingxuan & Yang, Dixiong, 2021. "Reliability analysis of structures with multimodal distributions based on direct probability integral method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Viktor Winschel & Markus Kr‰tzig, 2010. "Solving, Estimating, and Selecting Nonlinear Dynamic Models Without the Curse of Dimensionality," Econometrica, Econometric Society, vol. 78(2), pages 803-821, March.
    15. Sarah Gelper & Ralf van der Lans & Gerrit van Bruggen, 2021. "Competition for Attention in Online Social Networks: Implications for Seeding Strategies," Management Science, INFORMS, vol. 67(2), pages 1026-1047, February.
    16. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    17. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
    18. Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation: With an Application to Option Pricing," Papers 2102.09209, arXiv.org.
    19. Junko Koeda & Yoichi Ueno, 2022. "A Preferred Habitat View of Yield Curve Control," Bank of Japan Working Paper Series 22-E-7, Bank of Japan.
    20. Florian Heiss & Steven F. Venti & David A. Wise, 2014. "The Persistence and Heterogeneity of Health among Older Americans," NBER Working Papers 20306, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.