IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103i483y2008p1214-1224.html
   My bibliography  Save this article

Power-Transformed Linear Quantile Regression With Censored Data

Author

Listed:
  • Yin, Guosheng
  • Zeng, Donglin
  • Li, Hui

Abstract

No abstract is available for this item.

Suggested Citation

  • Yin, Guosheng & Zeng, Donglin & Li, Hui, 2008. "Power-Transformed Linear Quantile Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1214-1224.
  • Handle: RePEc:bes:jnlasa:v:103:i:483:y:2008:p:1214-1224
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/016214508000000490
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Jian Hsieh & Hong-Rui Wang, 2018. "Quantile regression based on counting process approach under semi-competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 395-419, April.
    2. Jin-Jian Hsieh & Cheng-Chih Hsieh, 2023. "Quantile Regression Based on the Weighted Approach with Dependent Truncated Data," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    3. Huixia Judy Wang & Deyuan Li, 2013. "Estimation of Extreme Conditional Quantiles Through Power Transformation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1062-1074, September.
    4. Shi, Peng & Frees, Edward W., 2010. "Long-tail longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 303-314, December.
    5. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.
    6. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:i:483:y:2008:p:1214-1224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.