IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3669-d1225150.html
   My bibliography  Save this article

Quantile Regression Based on the Weighted Approach with Dependent Truncated Data

Author

Listed:
  • Jin-Jian Hsieh

    (Department of Mathematics, National Chung Cheng University, Chia-Yi 621301, Taiwan)

  • Cheng-Chih Hsieh

    (Department of Mathematics, National Chung Cheng University, Chia-Yi 621301, Taiwan)

Abstract

This paper discusses the estimation of parameters in the quantile regression model for dependent truncated data. To account for the dependence between the survival time and the truncated time, the Archimedean copula model is used to construct the association. The parameters of the Archimedean copula model are estimated using certain existing approaches. An inference procedure based on a weighted approach is proposed, where the weights are set according to the variables of interest in the quantile regression model. The finite sample performance of the proposed approach is examined through simulations, and the method is applied to analyze two real datasets: the transfusion-related AIDS dataset and the retirement community center dataset.

Suggested Citation

  • Jin-Jian Hsieh & Cheng-Chih Hsieh, 2023. "Quantile Regression Based on the Weighted Approach with Dependent Truncated Data," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3669-:d:1225150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Guosheng & Zeng, Donglin & Li, Hui, 2008. "Power-Transformed Linear Quantile Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1214-1224.
    2. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    3. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    4. Peng, Limin & Fine, Jason P., 2009. "Competing Risks Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1440-1453.
    5. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    6. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    7. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    8. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    9. Pao-sheng Shen, 2009. "A class of rank-based test for left-truncated and right-censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 461-476, June.
    10. Stephen Portnoy & Guixian Lin, 2010. "Asymptotics for censored regression quantiles," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 115-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-Jian Hsieh & Hong-Rui Wang, 2018. "Quantile regression based on counting process approach under semi-competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 395-419, April.
    2. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    3. Peng, Limin, 2012. "Self-consistent estimation of censored quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 368-379.
    4. P. Čížek & S. Sadikoglu, 2018. "Bias-corrected quantile regression estimation of censored regression models," Statistical Papers, Springer, vol. 59(1), pages 215-247, March.
    5. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    6. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    7. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    8. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    9. Bilias, Yannis & Florios, Kostas & Skouras, Spyros, 2019. "Exact computation of Censored Least Absolute Deviations estimator," Journal of Econometrics, Elsevier, vol. 212(2), pages 584-606.
    10. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    11. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    12. Fitzenberger, Bernd & Winker, Peter, 2007. "Improving the computation of censored quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 88-108, September.
    13. Rima Rajab & Milan Dražić & Nenad Mladenović & Pavle Mladenović & Keming Yu, 2015. "Fitting censored quantile regression by variable neighborhood search," Journal of Global Optimization, Springer, vol. 63(3), pages 481-500, November.
    14. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Zhou, Xiuqing & Wang, Jinde, 2005. "A genetic method of LAD estimation for models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 451-466, March.
    16. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    17. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    18. Elke Lüdemann & Ralf Wilke & Xuan Zhang, 2006. "Censored quantile regressions and the length of unemployment periods in West Germany," Empirical Economics, Springer, vol. 31(4), pages 1003-1024, November.
    19. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
    20. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3669-:d:1225150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.