IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i500p1297-1309.html
   My bibliography  Save this article

Functional Causal Mediation Analysis With an Application to Brain Connectivity

Author

Listed:
  • Martin A. Lindquist

Abstract

Mediation analysis is often used in the behavioral sciences to investigate the role of intermediate variables that lie on the causal path between a randomized treatment and an outcome variable. Typically, mediation is assessed using structural equation models (SEMs), with model coefficients interpreted as causal effects. In this article, we present an extension of SEMs to the functional data analysis (FDA) setting that allows the mediating variable to be a continuous function rather than a single scalar measure, thus providing the opportunity to study the functional effects of the mediator on the outcome. We provide sufficient conditions for identifying the average causal effects of the functional mediators using the extended SEM, as well as weaker conditions under which an instrumental variable estimand may be interpreted as an effect. The method is applied to data from a functional magnetic resonance imaging (fMRI) study of thermal pain that sought to determine whether activation in certain brain regions mediated the effect of applied temperature on self-reported pain. Our approach provides valuable information about the timing of the mediating effect that is not readily available when using the standard nonfunctional approach. To the best of our knowledge, this work provides the first application of causal inference to the FDA framework.

Suggested Citation

  • Martin A. Lindquist, 2012. "Functional Causal Mediation Analysis With an Application to Brain Connectivity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1297-1309, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1297-1309
    DOI: 10.1080/01621459.2012.695640
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.695640
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.695640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    2. Flachaire, Emmanuel, 2005. "Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 361-376, April.
    3. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    4. Michael E. Sobel, 2008. "Identification of Causal Parameters in Randomized Studies With Mediating Variables," Journal of Educational and Behavioral Statistics, , vol. 33(2), pages 230-251, June.
    5. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    6. Thomas R. Ten Have & Marshall M. Joffe & Kevin G. Lynch & Gregory K. Brown & Stephen A. Maisto & Aaron T. Beck, 2007. "Causal Mediation Analyses with Rank Preserving Models," Biometrics, The International Biometric Society, vol. 63(3), pages 926-934, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhao & Lexin Li & Brian S. Caffo, 2021. "Multimodal neuroimaging data integration and pathway analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 879-889, September.
    2. Amirhessam Tahmassebi & Amir H. Gandomi & Mieke H. J. Schulte & Anna E. Goudriaan & Simon Y. Foo & Anke Meyer-Baese, 2018. "Optimized Naive-Bayes and Decision Tree Approaches for fMRI Smoking Cessation Classification," Complexity, Hindawi, vol. 2018, pages 1-24, May.
    3. Zhao, Yi & Luo, Xi, 2023. "Multilevel mediation analysis with structured unmeasured mediator-outcome confounding," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    4. Yenny Webb-Vargas & Shaojie Chen & Aaron Fisher & Amanda Mejia & Yuting Xu & Ciprian Crainiceanu & Brian Caffo & Martin A. Lindquist, 2017. "Big Data and Neuroimaging," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 543-558, December.
    5. Shu Jiang & Graham A. Colditz, 2023. "Causal mediation analysis using high‐dimensional image mediator bounded in irregular domain with an application to breast cancer," Biometrics, The International Biometric Society, vol. 79(4), pages 3728-3738, December.
    6. Zheng, Xueying & Xue, Lan & Qu, Annie, 2018. "Time-varying correlation structure estimation and local-feature detection for spatio-temporal data," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 221-239.
    7. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    8. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    9. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    10. WenWu Wang & Ping Yu, 2023. "Nonequivalence of two least-absolute-deviation estimators for mediation effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 370-387, March.
    11. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    12. Hye Won Suk & Heungsun Hwang, 2016. "Functional Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 940-968, December.
    13. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    14. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    15. Dominik Poß & Dominik Liebl & Alois Kneip & Hedwig Eisenbarth & Tor D. Wager & Lisa Feldman Barrett, 2020. "Superconsistent estimation of points of impact in non‐parametric regression with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1115-1140, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geenens, Gery, 2015. "Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 369-377.
    2. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    3. Osbat, Chiara & Corbo, Vesna, 2012. "Optimism bias? The elasticity puzzle in international economics revisited," Working Paper Series 1482, European Central Bank.
    4. Melody Denhere & Huybrechts F. Bindele, 2016. "Rank estimation for the functional linear model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1928-1944, August.
    5. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    6. Ahn, Kyungmin & Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2020. "Regression models using shapes of functions as predictors," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    7. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    8. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    9. Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
    10. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    11. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    12. F. Ferraty & A. Goia & E. Salinelli & P. Vieu, 2013. "Functional projection pursuit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 293-320, June.
    13. Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
    14. Kalogridis, Ioannis, 2024. "Robust and adaptive functional logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    15. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    16. Yue Zhang & Ben Boukai, 2022. "Recycled two-stage estimation in nonlinear mixed effects regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 551-585, September.
    17. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    18. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    19. Christian Dippel & Robert Gold & Stephan Heblich & Rodrigo Pinto, 2017. "Instrumental Variables and Causal Mechanisms: Unpacking the Effect of Trade on Workers and Voters," CESifo Working Paper Series 6816, CESifo.
    20. Solórzano Diego & Dixon Huw, 2020. "The Relationship Between Nominal Wage and Price Flexibility: New Evidence," Working Papers 2020-20, Banco de México.
    21. Augsburg, Britta & Rodríguez-Lesmes, Paul Andrés, 2018. "Sanitation and child health in India," World Development, Elsevier, vol. 107(C), pages 22-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1297-1309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.