IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2740817.html
   My bibliography  Save this article

Optimized Naive-Bayes and Decision Tree Approaches for fMRI Smoking Cessation Classification

Author

Listed:
  • Amirhessam Tahmassebi
  • Amir H. Gandomi
  • Mieke H. J. Schulte
  • Anna E. Goudriaan
  • Simon Y. Foo
  • Anke Meyer-Baese

Abstract

This paper aims at developing new theory-driven biomarkers by implementing and evaluating novel techniques from resting-state scans that can be used in relapse prediction for nicotine-dependent patients and future treatment efficacy. Two classes of patients were studied. One class took the drug N-acetylcysteine and the other class took a placebo. Then, the patients underwent a double-blind smoking cessation treatment and the resting-state fMRI scans of their brains before and after treatment were recorded. The scientific research goal of this study was to interpret the fMRI connectivity maps based on machine learning algorithms to predict the patient who will relapse and the one who will not. In this regard, the feature matrix was extracted from the image slices of brain employing voxel selection schemes and data reduction algorithms. Then, the feature matrix was fed into the machine learning classifiers including optimized CART decision tree and Naive-Bayes classifier with standard and optimized implementation employing 10-fold cross-validation. Out of all the data reduction techniques and the machine learning algorithms employed, the best accuracy was obtained using the singular value decomposition along with the optimized Naive-Bayes classifier. This gave an accuracy of 93% with sensitivity-specificity of 99% which suggests that the relapse in nicotine-dependent patients can be predicted based on the resting-state fMRI images. The use of these approaches may result in clinical applications in the future.

Suggested Citation

  • Amirhessam Tahmassebi & Amir H. Gandomi & Mieke H. J. Schulte & Anna E. Goudriaan & Simon Y. Foo & Anke Meyer-Baese, 2018. "Optimized Naive-Bayes and Decision Tree Approaches for fMRI Smoking Cessation Classification," Complexity, Hindawi, vol. 2018, pages 1-24, May.
  • Handle: RePEc:hin:complx:2740817
    DOI: 10.1155/2018/2740817
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/2740817.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/2740817.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2740817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jakub Kuzilek & Vaclav Kremen & Filip Soucek & Lenka Lhotska, 2014. "Independent Component Analysis and Decision Trees for ECG Holter Recording De-Noising," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    2. Martin A. Lindquist, 2012. "Functional Causal Mediation Analysis With an Application to Brain Connectivity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1297-1309, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel Doubravsky & Mirko Dohnal, 2015. "Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-18, July.
    2. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    3. WenWu Wang & Ping Yu, 2023. "Nonequivalence of two least-absolute-deviation estimators for mediation effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 370-387, March.
    4. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    5. Zhao, Yi & Luo, Xi, 2023. "Multilevel mediation analysis with structured unmeasured mediator-outcome confounding," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    7. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    8. Yi Zhao & Lexin Li & Brian S. Caffo, 2021. "Multimodal neuroimaging data integration and pathway analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 879-889, September.
    9. Zheng, Xueying & Xue, Lan & Qu, Annie, 2018. "Time-varying correlation structure estimation and local-feature detection for spatio-temporal data," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 221-239.
    10. Hye Won Suk & Heungsun Hwang, 2016. "Functional Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 940-968, December.
    11. Dominik Poß & Dominik Liebl & Alois Kneip & Hedwig Eisenbarth & Tor D. Wager & Lisa Feldman Barrett, 2020. "Superconsistent estimation of points of impact in non‐parametric regression with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1115-1140, September.
    12. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    13. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    14. Yenny Webb-Vargas & Shaojie Chen & Aaron Fisher & Amanda Mejia & Yuting Xu & Ciprian Crainiceanu & Brian Caffo & Martin A. Lindquist, 2017. "Big Data and Neuroimaging," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 543-558, December.
    15. Shu Jiang & Graham A. Colditz, 2023. "Causal mediation analysis using high‐dimensional image mediator bounded in irregular domain with an application to breast cancer," Biometrics, The International Biometric Society, vol. 79(4), pages 3728-3738, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2740817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.