IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v192y2024ics0167947323002165.html
   My bibliography  Save this article

Robust and adaptive functional logistic regression

Author

Listed:
  • Kalogridis, Ioannis

Abstract

A novel family of robust estimators for the functional logistic regression model is introduced and studied. The estimators are based on the concept of density power divergence between densities and may be formed with any combination of lower rank approximations and penalties, as the need arises. Uniform convergence and high rates of convergence with respect to the commonly used prediction error are established under general assumptions. Importantly, these assumptions permit random tuning parameters thereby allowing for the robustness of the estimators to adapt to the data. This leads to estimators with high efficiency in clean data and a high degree of resistance towards atypical observations. The highly competitive practical performance of the proposed family of estimators is illustrated on a simulation study and a real data example involving gait analysis and which includes atypical observations.

Suggested Citation

  • Kalogridis, Ioannis, 2024. "Robust and adaptive functional logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002165
    DOI: 10.1016/j.csda.2023.107905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323002165
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    2. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, November.
    7. Cardot, Hervé & Sarda, Pacal, 2005. "Estimation in generalized linear models for functional data via penalized likelihood," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 24-41, January.
    8. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    9. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Rejoinder to ‘multivariate functional outlier detection’," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 269-277, July.
    10. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, November.
    11. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    12. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    2. Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
    3. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    4. Liu, Jingyuan & Lou, Lejia & Li, Runze, 2018. "Variable selection for partially linear models via partial correlation," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 418-434.
    5. Takuma Yoshida, 2019. "Two stage smoothing in additive models with missing covariates," Statistical Papers, Springer, vol. 60(6), pages 1803-1826, December.
    6. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    7. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    8. Mark J. Meyer & Brent A. Coull & Francesco Versace & Paul Cinciripini & Jeffrey S. Morris, 2015. "Bayesian function‐on‐function regression for multilevel functional data," Biometrics, The International Biometric Society, vol. 71(3), pages 563-574, September.
    9. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    10. Andreas Groll & Trevor Hastie & Gerhard Tutz, 2017. "Selection of effects in Cox frailty models by regularization methods," Biometrics, The International Biometric Society, vol. 73(3), pages 846-856, September.
    11. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Degao Li & Guodong Li & Jinhong You, 2014. "Significant Variable Selection And Autoregressive Order Determination For Time-Series Partially Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 478-490, August.
    13. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    14. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    15. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    16. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    17. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    18. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    19. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    20. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.