IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i12p2743-2760.html
   My bibliography  Save this article

Semiparametric Bayesian hierarchical models for heterogeneous population in nonlinear mixed effect model: application to gastric emptying studies

Author

Listed:
  • Huaiye Zhang
  • Inyoung Kim
  • Chun Gun Park

Abstract

Gastric emptying studies are frequently used in medical research, both human and animal, when evaluating the effectiveness and determining the unintended side-effects of new and existing medications, diets, and procedures or interventions. It is essential that gastric emptying data be appropriately summarized before making comparisons between study groups of interest and to allow study the comparisons. Since gastric emptying data have a nonlinear emptying curve and are longitudinal data, nonlinear mixed effect (NLME) models can accommodate both the variation among measurements within individuals and the individual-to-individual variation. However, the NLME model requires strong assumptions that are often not satisfied in real applications that involve a relatively small number of subjects, have heterogeneous measurement errors, or have large variation among subjects. Therefore, we propose three semiparametric Bayesian NLMEs constructed with Dirichlet process priors, which automatically cluster sub-populations and estimate heterogeneous measurement errors. To compare three semiparametric models with the parametric model we propose a penalized posterior Bayes factor. We compare the performance of our semiparametric hierarchical Bayesian approaches with that of the parametric Bayesian hierarchical approach. Simulation results suggest that our semiparametric approaches are more robust and flexible. Our gastric emptying studies from equine medicine are used to demonstrate the advantage of our approaches.

Suggested Citation

  • Huaiye Zhang & Inyoung Kim & Chun Gun Park, 2014. "Semiparametric Bayesian hierarchical models for heterogeneous population in nonlinear mixed effect model: application to gastric emptying studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2743-2760, December.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2743-2760
    DOI: 10.1080/02664763.2014.928848
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.928848
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.928848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    2. Petrone, Sonia & Raftery, Adrian E., 1997. "A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 69-83, November.
    3. Chib, Siddhartha & Greenberg, Edward, 2010. "Additive cubic spline regression with Dirichlet process mixture errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 322-336, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Peng & Kim, Inyoung & Lee, Ki-Ahm, 2018. "Dual-semiparametric regression using weighted Dirichlet process mixture," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 162-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    2. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    3. Stephen G. Walker, 2006. "Sampling the Dirichlet Mixture Model with Slices," ICER Working Papers - Applied Mathematics Series 16-2006, ICER - International Centre for Economic Research.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    5. Buzbas Erkan Ozge & Joyce Paul & Abdo Zaid, 2009. "Estimation of Selection Intensity under Overdominance by Bayesian Methods," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, June.
    6. Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
    7. Saeede Ajorlou & Issac Shams & Kai Yang, 2015. "An analytics approach to designing patient centered medical homes," Health Care Management Science, Springer, vol. 18(1), pages 3-18, March.
    8. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    9. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.
    10. Manuel Wiesenfarth & Carlos Matías Hisgen & Thomas Kneib & Carmen Cadarso-Suarez, 2014. "Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 468-482, July.
    11. Ho, Chi-san & Damien, Paul & Walker, Stephen, 2017. "Bayesian mode regression using mixtures of triangular densities," Journal of Econometrics, Elsevier, vol. 197(2), pages 273-283.
    12. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    13. Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.
    14. Planas, Christophe & Rossi, Alessandro, 2018. "The slice sampler and centrally symmetric distributions," JRC Working Papers in Economics and Finance 2018-11, Joint Research Centre, European Commission.
    15. Christos Merkatas & Simo Särkkä, 2023. "System identification using autoregressive Bayesian neural networks with nonparametric noise models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 319-330, May.
    16. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2009. "A Bayesian nonparametric study of a dynamic nonlinear model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3948-3956, October.
    17. HOOGERHEIDE, Lennart F. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2007. "Simulation based Bayesian econometric inference: principles and some recent computational advances," LIDAM Discussion Papers CORE 2007015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
    19. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    20. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2743-2760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.