IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v36y1997i1p69-83.html
   My bibliography  Save this article

A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability

Author

Listed:
  • Petrone, Sonia
  • Raftery, Adrian E.

Abstract

We consider Bayesian nonparametric inference for continuous-valued partially exchangeable data, when the partition of the observations into groups is unknown. This includes change-point problems and mixture models. As the prior, we consider a mixture of products of Dirichlet processes. We show that the discreteness of the Dirichlet process can have a large effect on inference (posterior distributions and Bayes factors), leading to conclusions that can be different from those that result from a reasonable parametric model. When the observed data are all distinct, the effect of the prior on the posterior is to favor more evenly balanced partitions, and its effect on Bayes factors is to favor more groups. In a hierarchical model with a Dirichlet process as the second-stage prior, the prior can also have a large effect on inference, but in the opposite direction, towards more unbalanced partitions.

Suggested Citation

  • Petrone, Sonia & Raftery, Adrian E., 1997. "A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 69-83, November.
  • Handle: RePEc:eee:stapro:v:36:y:1997:i:1:p:69-83
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(97)00050-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    2. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.
    3. Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
    4. Guglielmi, Alessandra & Melilli, Eugenio, 2000. "Approximating de Finetti's measures for partially exchangeable sequences," Statistics & Probability Letters, Elsevier, vol. 48(3), pages 309-315, July.
    5. Gebrenegus Ghilagaber & Parfait Munezero, 2020. "Bayesian change-point modelling of the effects of 3-points-for-a-win rule in football," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(2), pages 248-264, January.
    6. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.
    7. Huaiye Zhang & Inyoung Kim & Chun Gun Park, 2014. "Semiparametric Bayesian hierarchical models for heterogeneous population in nonlinear mixed effect model: application to gastric emptying studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2743-2760, December.
    8. Antonio Lijoi & Bernardo Nipoti & Igor Prünster, 2013. "Dependent mixture models: clustering and borrowing information," DEM Working Papers Series 046, University of Pavia, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:36:y:1997:i:1:p:69-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.