IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i11p2342-2357.html
   My bibliography  Save this article

Regression for non-Euclidean data using distance matrices

Author

Listed:
  • Julian J. Faraway

Abstract

Regression methods for common data types such as measured, count and categorical variables are well understood but increasingly statisticians need ways to model relationships between variable types such as shapes, curves, trees, correlation matrices and images that do not fit into the standard framework. Data types that lie in metric spaces but not in vector spaces are difficult to use within the usual regression setting, either as the response and/or a predictor. We represent the information in these variables using distance matrices which requires only the specification of a distance function. A low-dimensional representation of such distance matrices can be obtained using methods such as multidimensional scaling. Once these variables have been represented as scores, an internal model linking the predictors and the responses can be developed using standard methods. We call scoring as the transformation from a new observation to a score, whereas backscoring is a method to represent a score as an observation in the data space. Both methods are essential for prediction and explanation. We illustrate the methodology for shape data, unregistered curve data and correlation matrices using motion capture data from an experiment to study the motion of children with cleft lip.

Suggested Citation

  • Julian J. Faraway, 2014. "Regression for non-Euclidean data using distance matrices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2342-2357, November.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:11:p:2342-2357
    DOI: 10.1080/02664763.2014.909794
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.909794
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.909794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Daniels, 2002. "Bayesian analysis of covariance matrices and dynamic models for longitudinal data," Biometrika, Biometrika Trust, vol. 89(3), pages 553-566, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    2. Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
    3. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    4. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    5. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    6. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    7. Daniels, Michael J., 2006. "Bayesian modeling of several covariance matrices and some results on propriety of the posterior for linear regression with correlated and/or heterogeneous errors," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1185-1207, May.
    8. Yu Cao & Nitai D. Mukhopadhyay, 2021. "Statistical Modeling of Longitudinal Data with Non-Ignorable Non-Monotone Missingness with Semiparametric Bayesian and Machine Learning Components," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 152-169, May.
    9. Creal, Drew & Kim, Jaeho, 2024. "Bayesian estimation of cluster covariance matrices of unknown form," Journal of Econometrics, Elsevier, vol. 241(1).
    10. Webb, Emily L. & Forster, Jonathan J., 2008. "Bayesian model determination for multivariate ordinal and binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2632-2649, January.
    11. Kiranmoy Das & Michael J. Daniels, 2014. "A semiparametric approach to simultaneous covariance estimation for bivariate sparse longitudinal data," Biometrics, The International Biometric Society, vol. 70(1), pages 33-43, March.
    12. Keunbaik Lee & Hoimin Jung & Jae Keun Yoo, 2019. "Modeling of the ARMA random effects covariance matrix in logistic random effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 281-299, June.
    13. Lee, Keunbaik & Lee, JungBok & Hagan, Joseph & Yoo, Jae Keun, 2012. "Modeling the random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1545-1551.
    14. Luca Aiello & Matteo Fontana & Alessandra Guglielmi, 2023. "Bayesian functional emulation of CO2 emissions on future climate change scenarios," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    15. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    16. Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
    17. Lee, Keunbaik & Baek, Changryong & Daniels, Michael J., 2017. "ARMA Cholesky factor models for the covariance matrix of linear models," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 267-280.
    18. Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
    19. Marot, Guillemette & Foulley, Jean-Louis & Jaffrzic, Florence, 2009. "A structural mixed model to shrink covariance matrices for time-course differential gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1630-1638, March.
    20. Haydar Demirhan & Canan Hamurkaroglu, 2008. "Bayesian estimation of log odds ratios from R × C and 2 × 2 × K contingency tables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(4), pages 405-424, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:11:p:2342-2357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.