IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i5p1630-1638.html
   My bibliography  Save this article

A structural mixed model to shrink covariance matrices for time-course differential gene expression studies

Author

Listed:
  • Marot, Guillemette
  • Foulley, Jean-Louis
  • Jaffrzic, Florence

Abstract

Time-course microarray studies require a particular modelling of covariance matrices when measures are repeated on the same individuals. Taking into account the within-subject correlation in the test statistics for differential gene expression, however, requires a large number of parameters when a gene-specific approach is used, which often results in a lack of power due to the small number of individuals usually considered in microarray experiments. Shrinkage approaches can improve this detection power in differential gene expression studies by reducing the number of parameters, while offering a good flexibility and a small rate of false positives. A natural extension of the shrinkage approach based on a structural mixed model to variance-covariance matrices is proposed. The structural model was used in three configurations to shrink (i) the eigenvalues in an eigenvalue/eigenvector decomposition, (ii) the innovation variances in a Cholesky decomposition, (iii) both the variances and correlation parameters of a gene-by-gene covariance matrix using a Fisher transformation. The proposed methods were applied both to a publicly available data set and to simulated data. They were found to perform well, compared to previously proposed empirical Bayesian approaches, and outperformed the gene-specific or common-covariance methods in many cases.

Suggested Citation

  • Marot, Guillemette & Foulley, Jean-Louis & Jaffrzic, Florence, 2009. "A structural mixed model to shrink covariance matrices for time-course differential gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1630-1638, March.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1630-1638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00217-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelini Claudia & De Canditiis Daniela & Mutarelli Margherita & Pensky Marianna, 2007. "A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-33, September.
    2. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    3. Opgen-Rhein Rainer & Strimmer Korbinian, 2007. "Accurate Ranking of Differentially Expressed Genes by a Distribution-Free Shrinkage Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-20, February.
    4. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    5. Michael J. Daniels, 2002. "Bayesian analysis of covariance matrices and dynamic models for longitudinal data," Biometrika, Biometrika Trust, vol. 89(3), pages 553-566, August.
    6. Foulley, J. L. & San Cristobal, M. & Gianola, D. & Im, S., 1992. "Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 13(3), pages 291-305, April.
    7. repec:bla:biomet:v:62:y:2006:i:1:p:10-18:1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniels, Michael J., 2006. "Bayesian modeling of several covariance matrices and some results on propriety of the posterior for linear regression with correlated and/or heterogeneous errors," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1185-1207, May.
    2. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    3. Sophie Depiereux & Florence Le Gac & Bertrand De Meulder & Michael Pierre & Raphaël Helaers & Yann Guiguen & Patrick Kestemont & Eric Depiereux, 2015. "Meta-Analysis of Microarray Data of Rainbow Trout Fry Gonad Differentiation Modulated by Ethynylestradiol," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    4. Tong, Tiejun & Jang, Homin & Wang, Yuedong, 2012. "James–Stein type estimators of variances," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 232-243.
    5. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    6. Xiao Min & Chen Ting & Huang Kunpeng & Ming Ruixing, 2020. "Optimal Estimation for Power of Variance with Application to Gene-Set Testing," Journal of Systems Science and Information, De Gruyter, vol. 8(6), pages 549-564, December.
    7. Peter Hall & D. M. Titterington & Jing‐Hao Xue, 2009. "Tilting methods for assessing the influence of components in a classifier," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 783-803, September.
    8. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    9. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    10. D. Gunzler & W. Tang & N. Lu & P. Wu & X. Tu, 2014. "A Class of Distribution-Free Models for Longitudinal Mediation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 543-568, October.
    11. Miao-Yu Tsai & Chuhsing Hsiao, 2008. "Computation of reference Bayesian inference for variance components in longitudinal studies," Computational Statistics, Springer, vol. 23(4), pages 587-604, October.
    12. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    13. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    14. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    15. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    16. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    17. Angelini, Claudia & De Canditiis, Daniela & Pensky, Marianna, 2009. "Bayesian models for two-sample time-course microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1547-1565, March.
    18. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    19. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    20. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1630-1638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.