IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i5p1115-1128.html
   My bibliography  Save this article

Linear regression with compositional explanatory variables

Author

Listed:
  • K. Hron
  • P. Filzmoser
  • K. Thompson

Abstract

Compositional explanatory variables should not be directly used in a linear regression model because any inference statistic can become misleading. While various approaches for this problem were proposed, here an approach based on the isometric logratio (ilr) transformation is used. It turns out that the resulting model is easy to handle, and that parameter estimation can be done in like in usual linear regression. Moreover, it is possible to use the ilr variables for inference statistics in order to obtain an appropriate interpretation of the model.

Suggested Citation

  • K. Hron & P. Filzmoser & K. Thompson, 2012. "Linear regression with compositional explanatory variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1115-1128, November.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:5:p:1115-1128
    DOI: 10.1080/02664763.2011.644268
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.644268
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.644268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hron, K. & Templ, M. & Filzmoser, P., 2010. "Imputation of missing values for compositional data using classical and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3095-3107, December.
    2. Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    2. J. Haslett & M. Whiley & S. Bhattacharya & M. Salter‐Townshend & Simon P. Wilson & J. R. M. Allen & B. Huntley & F. J. G. Mitchell, 2006. "Bayesian palaeoclimate reconstruction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 395-438, July.
    3. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    4. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2019. "Forecast density combinations with dynamic learning for large data sets in economics and finance," Working Paper 2019/7, Norges Bank.
    5. Tutz, Gerhard & Ramzan, Shahla, 2015. "Improved methods for the imputation of missing data by nearest neighbor methods," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 84-99.
    6. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.
    7. Maria Anna Di Palma & Michele Gallo, 2019. "External Information Model in a Compositional Perspective: Evaluation of Campania Adolescents’ Preferences in the Allocation of Leisure-Time," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 117-133, November.
    8. Yaru Song & Hongyu Zhao & Tao Wang, 2020. "An adaptive independence test for microbiome community data," Biometrics, The International Biometric Society, vol. 76(2), pages 414-426, June.
    9. Michele Gallo & Violetta Simonacci & Maria Anna Palma, 2019. "An integrated algorithm for three-way compositional data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2353-2370, September.
    10. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    11. Elena Catanese, 2016. "Data Editing for Complex Surveys in Presence Of Administrative Data: An Application to Fss 2013 Livestock Survey Data Based on The Joint Sequential Use Of Different R Packages," Romanian Statistical Review, Romanian Statistical Review, vol. 64(2), pages 101-117, June.
    12. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    13. Mark A. Engle & Charles W. Nye & Ghanashyam Neupane & Scott A. Quillinan & Jonathan Fred McLaughlin & Travis McLing & Josep A. Martín-Fernández, 2022. "Predicting Rare Earth Element Potential in Produced and Geothermal Waters of the United States via Emergent Self-Organizing Maps," Energies, MDPI, vol. 15(13), pages 1-21, June.
    14. Peter Filzmoser & Karel Hron & Matthias Templ, 2012. "Discriminant analysis for compositional data and robust parameter estimation," Computational Statistics, Springer, vol. 27(4), pages 585-604, December.
    15. Johnson, Devin S. & Hoeting, Jennifer A., 2011. "Properties of graphical regression models for multidimensional categorical data," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1471-1475, October.
    16. M. A. Di Palma & M. Gallo, 2016. "A co-median approach to detect compositional outliers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(13), pages 2348-2362, October.
    17. Violetta Simonacci & Michele Gallo, 2019. "Detecting Public Social Spending Patterns in Italy Using a Three-Way Relative Variation Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 205-219, November.
    18. Terence Mills, 2010. "Forecasting compositional time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(4), pages 673-690, June.
    19. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    20. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:5:p:1115-1128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.