IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p414-426.html
   My bibliography  Save this article

An adaptive independence test for microbiome community data

Author

Listed:
  • Yaru Song
  • Hongyu Zhao
  • Tao Wang

Abstract

Advances in sequencing technologies and bioinformatics tools have vastly improved our ability to collect and analyze data from complex microbial communities. A major goal of microbiome studies is to correlate the overall microbiome composition with clinical or environmental variables. La Rosa et al. recently proposed a parametric test for comparing microbiome populations between two or more groups of subjects. However, this method is not applicable for testing the association between the community composition and a continuous variable. Although multivariate nonparametric methods based on permutations are widely used in ecology studies, they lack interpretability and can be inefficient for analyzing microbiome data. We consider the problem of testing for independence between the microbial community composition and a continuous or many‐valued variable. By partitioning the range of the variable into a few slices, we formulate the problem as a problem of comparing multiple groups of microbiome samples, with each group indexed by a slice. To model multivariate and over‐dispersed count data, we use the Dirichlet‐multinomial distribution. We propose an adaptive likelihood‐ratio test by learning a good partition or slicing scheme from the data. A dynamic programming algorithm is developed for numerical optimization. We demonstrate the superiority of the proposed test by numerically comparing it with that of La Rosa et al. and other popular approaches on the same topic including PERMANOVA, the distance covariance test, and the microbiome regression‐based kernel association test. We further apply it to test the association of gut microbiome with age in three geographically distinct populations and show how the learned partition facilitates differential abundance analysis.

Suggested Citation

  • Yaru Song & Hongyu Zhao & Tao Wang, 2020. "An adaptive independence test for microbiome community data," Biometrics, The International Biometric Society, vol. 76(2), pages 414-426, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:414-426
    DOI: 10.1111/biom.13154
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13154
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian Holmes & Keith Harris & Christopher Quince, 2012. "Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    2. Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
    3. Tao Wang & Hongyu Zhao, 2017. "A Dirichlet-tree multinomial regression model for associating dietary nutrients with gut microorganisms," Biometrics, The International Biometric Society, vol. 73(3), pages 792-801, September.
    4. Patricio S La Rosa & J Paul Brooks & Elena Deych & Edward L Boone & David J Edwards & Qin Wang & Erica Sodergren & George Weinstock & William D Shannon, 2012. "Hypothesis Testing and Power Calculations for Taxonomic-Based Human Microbiome Data," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    5. Tanya Yatsunenko & Federico E. Rey & Mark J. Manary & Indi Trehan & Maria Gloria Dominguez-Bello & Monica Contreras & Magda Magris & Glida Hidalgo & Robert N. Baldassano & Andrey P. Anokhin & Andrew C, 2012. "Human gut microbiome viewed across age and geography," Nature, Nature, vol. 486(7402), pages 222-227, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pratheepa Jeganathan & Susan P. Holmes, 2021. "A Statistical Perspective on the Challenges in Molecular Microbial Biology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 131-160, June.
    2. Shaikh Mateen R. & Beyene Joseph, 2017. "Statistical models and computational algorithms for discovering relationships in microbiome data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 1-12, March.
    3. Patrick LeBlanc & Li Ma, 2023. "Microbiome subcommunity learning with logistic‐tree normal latent Dirichlet allocation," Biometrics, The International Biometric Society, vol. 79(3), pages 2321-2332, September.
    4. Tu, Wangshu & Browne, Ryan & Subedi, Sanjeena, 2024. "A mixture of logistic skew-normal multinomial models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    5. Zhigang Li & Katherine Lee & Margaret R. Karagas & Juliette C. Madan & Anne G. Hoen & A. James O’Malley & Hongzhe Li, 2018. "Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 587-608, December.
    6. Mahbaneh Eshaghzadeh Torbati & Makedonka Mitreva & Vanathi Gopalakrishnan, 2016. "Application of Taxonomic Modeling to Microbiota Data Mining for Detection of Helminth Infection in Global Populations," Data, MDPI, vol. 1(3), pages 1-14, December.
    7. Sean M Gibbons & Sean M Kearney & Chris S Smillie & Eric J Alm, 2017. "Two dynamic regimes in the human gut microbiome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    8. Doris Vandeputte & Lindsey Commer & Raul Y. Tito & Gunter Kathagen & João Sabino & Séverine Vermeire & Karoline Faust & Jeroen Raes, 2021. "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Ruairi C. Robertson & Thaddeus J. Edens & Lynnea Carr & Kuda Mutasa & Ethan K. Gough & Ceri Evans & Hyun Min Geum & Iman Baharmand & Sandeep K. Gill & Robert Ntozini & Laura E. Smith & Bernard Chasekw, 2023. "The gut microbiome and early-life growth in a population with high prevalence of stunting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Achal Dhariwal & Polona Rajar & Gabriela Salvadori & Heidi Aarø Åmdal & Dag Berild & Ola Didrik Saugstad & Drude Fugelseth & Gorm Greisen & Ulf Dahle & Kirsti Haaland & Fernanda Cristina Petersen, 2024. "Prolonged hospitalization signature and early antibiotic effects on the nasopharyngeal resistome in preterm infants," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    12. John Molloy & Katrina Allen & Fiona Collier & Mimi L. K. Tang & Alister C. Ward & Peter Vuillermin, 2013. "The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life," IJERPH, MDPI, vol. 10(12), pages 1-22, December.
    13. Laura Anderlucci & Cinzia Viroli, 2020. "Mixtures of Dirichlet-Multinomial distributions for supervised and unsupervised classification of short text data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 759-770, December.
    14. Antonella Gagliardi & Valentina Totino & Fatima Cacciotti & Valerio Iebba & Bruna Neroni & Giulia Bonfiglio & Maria Trancassini & Claudio Passariello & Fabrizio Pantanella & Serena Schippa, 2018. "Rebuilding the Gut Microbiota Ecosystem," IJERPH, MDPI, vol. 15(8), pages 1-24, August.
    15. Allison G. White & George S. Watts & Zhenqiang Lu & Maria M. Meza-Montenegro & Eric A. Lutz & Philip Harber & Jefferey L. Burgess, 2014. "Environmental Arsenic Exposure and Microbiota in Induced Sputum," IJERPH, MDPI, vol. 11(2), pages 1-15, February.
    16. Sanzhima Garmaeva & Trishla Sinha & Anastasia Gulyaeva & Nataliia Kuzub & Johanne E. Spreckels & Sergio Andreu-Sánchez & Ranko Gacesa & Arnau Vich Vila & Siobhan Brushett & Marloes Kruk & Jackie Deken, 2024. "Transmission and dynamics of mother-infant gut viruses during pregnancy and early life," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    18. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    19. J. Haslett & M. Whiley & S. Bhattacharya & M. Salter‐Townshend & Simon P. Wilson & J. R. M. Allen & B. Huntley & F. J. G. Mitchell, 2006. "Bayesian palaeoclimate reconstruction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 395-438, July.
    20. Tetyana Zakharkina & Elke Heinzel & Rembert A Koczulla & Timm Greulich & Katharina Rentz & Josch K Pauling & Jan Baumbach & Mathias Herrmann & Christiane Grünewald & Hendrik Dienemann & Lutz von Mülle, 2013. "Analysis of the Airway Microbiota of Healthy Individuals and Patients with Chronic Obstructive Pulmonary Disease by T-RFLP and Clone Sequencing," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-11, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:414-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.