IDEAS home Printed from https://ideas.repec.org/r/taf/japsta/v39y2012i5p1115-1128.html
   My bibliography  Save this item

Linear regression with compositional explanatory variables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dargel, Lukas & Thomas-Agnan, Christine, 2023. "Share-ratio interpretations of compositional regression models," TSE Working Papers 23-1456, Toulouse School of Economics (TSE), revised 20 Sep 2023.
  2. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
  3. Zhao, T.; & Sutton, M.; & Meacock, M.;, 2023. "Use of compositional covariates in linear regression: problems and solutions," Health, Econometrics and Data Group (HEDG) Working Papers 23/16, HEDG, c/o Department of Economics, University of York.
  4. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
  5. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
  6. Tsagris, Michail, 2015. "Regression analysis with compositional data containing zero values," MPRA Paper 67868, University Library of Munich, Germany.
  7. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
  8. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
  9. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.
  10. Mauricio Velasquez, 2016. "Compositions vs Gini: A new metric to evaluate the effects of land-income disparities," 2016 Papers pve364, Job Market Papers.
  11. Defever, F. & Riaño, A., 2022. "Firm-Destination Heterogeneity and the Distribution of Export Intensity," Working Papers 22/01, Department of Economics, City University London.
  12. Thomas-Agnan, Christine & Morais, Joanna, 2019. "Covariates impacts in compositional models and simplicial derivatives," TSE Working Papers 19-1057, Toulouse School of Economics (TSE).
  13. Janina Janurek & Sascha Abdel Hadi & Andreas Mojzisch & Jan Alexander Häusser, 2018. "The Association of the 24 Hour Distribution of Time Spent in Physical Activity, Work, and Sleep with Emotional Exhaustion," IJERPH, MDPI, vol. 15(9), pages 1-14, September.
  14. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
  15. Quim Zaldo-Aubanell & Ferran Campillo i López & Albert Bach & Isabel Serra & Joan Olivet-Vila & Marc Saez & David Pino & Roser Maneja, 2021. "Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study," IJERPH, MDPI, vol. 18(7), pages 1-20, April.
  16. Charlotte Lund Rasmussen & Javier Palarea-Albaladejo & Adrian Bauman & Nidhi Gupta & Kirsten Nabe-Nielsen & Marie Birk Jørgensen & Andreas Holtermann, 2018. "Does Physically Demanding Work Hinder a Physically Active Lifestyle in Low Socioeconomic Workers? A Compositional Data Analysis Based on Accelerometer Data," IJERPH, MDPI, vol. 15(7), pages 1-23, June.
  17. Jiajia Chen & Xiaoqin Zhang & Shengjia Li, 2017. "Multiple linear regression with compositional response and covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2270-2285, September.
  18. Monique Graf, 2020. "Regression for compositions based on a generalization of the Dirichlet distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 913-936, December.
  19. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
  20. J. A. Martín-Fernández, 2021. "“Compositional Data Analysis in Practice” by Michael Greenacre Universitat Pompeu Fabra (Barcelona, Spain), Chapman and Hall/CRC, 2018," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 109-111, April.
  21. Patrick L. Combettes & Christian L. Müller, 2021. "Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 217-242, July.
  22. Andriansyah, Andriansyah & Messinis, George, 2016. "Intended use of IPO proceeds and firm performance: A quantile regression approach," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 14-30.
  23. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
  24. Charlotte Lund Rasmussen & Javier Palarea-Albaladejo & Mette Korshøj & Nidhi Gupta & Kirsten Nabe-Nielsen & Andreas Holtermann & Marie Birk Jørgensen, 2019. "Is high aerobic workload at work associated with leisure time physical activity and sedentary behaviour among blue-collar workers? A compositional data analysis based on accelerometer data," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
  25. Morais, Joanna & Thomas-Agnan, Christine & Simioni, Michel, 2017. "Interpreting the impact of explanatory variables in compositional models," TSE Working Papers 17-805, Toulouse School of Economics (TSE).
  26. Dorothea Dumuid & Željko Pedišić & Javier Palarea-Albaladejo & Josep Antoni Martín-Fernández & Karel Hron & Timothy Olds, 2020. "Compositional Data Analysis in Time-Use Epidemiology: What, Why, How," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
  27. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
  28. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.
  29. Thomas-Agnan, Christine & Simioni, Michel & Trinh, Thi-Huong, 2023. "Discrete and Smooth Scalar-on-Density Compositional Regression for Assessing the Impact of Climate Change on Rice Yield in Vietnam," TSE Working Papers 23-1410, Toulouse School of Economics (TSE), revised Apr 2024.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.