IDEAS home Printed from https://ideas.repec.org/a/rsr/journl/v64y2016i2p101-117.html
   My bibliography  Save this article

Data Editing for Complex Surveys in Presence Of Administrative Data: An Application to Fss 2013 Livestock Survey Data Based on The Joint Sequential Use Of Different R Packages

Author

Listed:
  • Elena Catanese

    (Italian National Institute of Statistics (Istat))

Abstract

Data editing and imputation (E&I) in complex sample business surveys is a task which is usually split into two steps to gain efficiency in terms of time and human resources: first selective editing techniques are applied to the primary target estimates variables in order to identify a potential set of influential errors that require usually manual editing and a second part of automatic identification and imputation of inconsistencies and missing values. Within this framework, the present paper reviews the Italian top-down data editing strategy adopted and automated imputation showing the experience applied to 2013 Farm Structure Survey livestock data.In this edition this process has been entirely carried out in the R environment by means of different R packages.

Suggested Citation

  • Elena Catanese, 2016. "Data Editing for Complex Surveys in Presence Of Administrative Data: An Application to Fss 2013 Livestock Survey Data Based on The Joint Sequential Use Of Different R Packages," Romanian Statistical Review, Romanian Statistical Review, vol. 64(2), pages 101-117, June.
  • Handle: RePEc:rsr:journl:v:64:y:2016:i:2:p:101-117
    as

    Download full text from publisher

    File URL: http://www.revistadestatistica.ro/wp-content/uploads/2016/06/RRS2_2016_A09.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hron, K. & Templ, M. & Filzmoser, P., 2010. "Imputation of missing values for compositional data using classical and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3095-3107, December.
    2. Matthias Templ & Andreas Alfons & Peter Filzmoser, 2012. "Exploring incomplete data using visualization techniques," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 29-47, April.
    3. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Templ & K. Hron & P. Filzmoser, 2017. "Exploratory tools for outlier detection in compositional data with structural zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 734-752, March.
    2. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    3. Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
    4. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    5. Nancy, Jane Y. & Khanna, Nehemiah H. & Arputharaj, Kannan, 2017. "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 63-79.
    6. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    7. Marcello D’Orazio, 2015. "Integration and imputation of survey data in R: the StatMatch package," Romanian Statistical Review, Romanian Statistical Review, vol. 63(2), pages 57-68, June.
    8. Zhong, Hua & Hu, Wuyang, 2015. "Farmers’ Willingness to Engage in Best Management Practices: an Application of Multiple Imputation," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196962, Southern Agricultural Economics Association.
    9. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    10. Thomas Masterson, 2012. "Simulations of Full-Time Employment and Household Work in the Levy Institute Measure of Time and Income Poverty (LIMTIP) for Argentina, Chile, and Mexico," Economics Working Paper Archive wp_727, Levy Economics Institute.
    11. Chiara Elena Dalla & Menon Martina & Perali Federico, 2019. "An Integrated Database to Measure Living Standards," Journal of Official Statistics, Sciendo, vol. 35(3), pages 531-576, September.
    12. Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
    13. Daniel Araya & Guillermo Paraje, 2018. "The impact of prices on alcoholic beverage consumption in Chile," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    14. Sullivan, Danielle & Andridge, Rebecca, 2015. "A hot deck imputation procedure for multiply imputing nonignorable missing data: The proxy pattern-mixture hot deck," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 173-185.
    15. Soyeon Ahn & John M. Abbamonte, 2020. "A new approach for handling missing correlation values for meta‐analytic structural equation modeling: Corboundary R package," Campbell Systematic Reviews, John Wiley & Sons, vol. 16(1), March.
    16. Cheng, Xiaoyue & Cook, Dianne & Hofmann, Heike, 2015. "Visually Exploring Missing Values in Multivariable Data Using a Graphical User Interface," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i06).
    17. Tutz, Gerhard & Ramzan, Shahla, 2015. "Improved methods for the imputation of missing data by nearest neighbor methods," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 84-99.
    18. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    19. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.
    20. Constantin Rudolf Salomo Bürgi, 2023. "How to deal with missing observations in surveys of professional forecasters," Journal of Applied Economics, Taylor & Francis Journals, vol. 26(1), pages 2185975-218, December.

    More about this item

    Keywords

    Selective editing; data editing; Business Surveys; Automated Edit Rules; Imputation of Missing Values; Compositional Data; Random vs. Systematic Errors; Influential non Influential Errors; Statistical software R;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsr:journl:v:64:y:2016:i:2:p:101-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adrian Visoiu (email available below). General contact details of provider: https://edirc.repec.org/data/stagvro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.