IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i4p875-882.html
   My bibliography  Save this article

Spatio-temporal modeling of infectious disease dynamics

Author

Listed:
  • Sifat Sharmin
  • Md. Israt Rayhan

Abstract

A stochastic model, which is well suited to capture space--time dependence of an infectious disease, was employed in this study to describe the underlying spatial and temporal pattern of measles in Barisal Division, Bangladesh. The model has two components: an endemic component and an epidemic component; weights are used in the epidemic component for better accounting of the disease spread into different geographical regions. We illustrate our findings using a data set of monthly measles counts in the six districts of Barisal, from January 2000 to August 2009, collected from the Expanded Program on Immunization, Bangladesh. The negative binomial model with both the seasonal and autoregressive components was found to be suitable for capturing space--time dependence of measles in Barisal. Analyses were done using general optimization routines, which provided the maximum likelihood estimates with the corresponding standard errors.

Suggested Citation

  • Sifat Sharmin & Md. Israt Rayhan, 2012. "Spatio-temporal modeling of infectious disease dynamics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 875-882, September.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:875-882
    DOI: 10.1080/02664763.2011.624593
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.624593
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.624593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Morton & Bärbel F. Finkenstädt, 2005. "Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 575-594, June.
    2. Leonhard Knorr‐Held & Sylvia Richardson, 2003. "A hierarchical model for space–time surveillance data on meningococcal disease incidence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 169-183, May.
    3. N. G. Becker & T. Britton, 1999. "Statistical studies of infectious disease incidence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 287-307, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    2. Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2008. "Model‐based measurement of latent risk in time series with applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 265-277, January.
    3. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    4. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
    5. Konrad, Renata A. & Trapp, Andrew C. & Palmbach, Timothy M. & Blom, Jeffrey S., 2017. "Overcoming human trafficking via operations research and analytics: Opportunities for methods, models, and applications," European Journal of Operational Research, Elsevier, vol. 259(2), pages 733-745.
    6. Zhang, Zhibin, 2007. "The outbreak pattern of SARS cases in China as revealed by a mathematical model," Ecological Modelling, Elsevier, vol. 204(3), pages 420-426.
    7. Artalejo, J.R. & Lopez-Herrero, M.J., 2011. "The SIS and SIR stochastic epidemic models: A maximum entropy approach," Theoretical Population Biology, Elsevier, vol. 80(4), pages 256-264.
    8. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    9. Apiwat Budwong & Sansanee Auephanwiriyakul & Nipon Theera-Umpon, 2021. "Infectious Disease Relational Data Analysis Using String Grammar Non-Euclidean Relational Fuzzy C-Means," IJERPH, MDPI, vol. 18(15), pages 1-18, August.
    10. Andrew B Lawson & Joanne Kim, 2021. "Space-time covid-19 Bayesian SIR modeling in South Carolina," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    11. David Lunn & Robert J B Goudie & Chen Wei & Oliver Kaltz & Olivier Restif, 2013. "Modelling the Dynamics of an Experimental Host-Pathogen Microcosm within a Hierarchical Bayesian Framework," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
    12. Birgit Schrödle & Leonhard Held & Håvard Rue, 2012. "Assessing the Impact of a Movement Network on the Spatiotemporal Spread of Infectious Diseases," Biometrics, The International Biometric Society, vol. 68(3), pages 736-744, September.
    13. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    14. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    15. Karen M Ong & Michael S Phillips & Charles S Peskin, 2020. "A mathematical model and inference method for bacterial colonization in hospital units applied to active surveillance data for carbapenem-resistant enterobacteriaceae," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-32, November.
    16. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    17. Joe Meagher & Nial Friel, 2022. "Assessing epidemic curves for evidence of superspreading," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2179-2202, October.
    18. Qingxia Zhang & Dingcheng Wang, 2015. "Assessing the Role of Voluntary Self-Isolation in the Control of Pandemic Influenza Using a Household Epidemic Model," IJERPH, MDPI, vol. 12(8), pages 1-18, August.
    19. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    20. Ángel Berihuete & Marta Sánchez-Sánchez & Alfonso Suárez-Llorens, 2021. "A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve," Mathematics, MDPI, vol. 9(3), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:875-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.