IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007589.html
   My bibliography  Save this article

Fine-scale family structure shapes influenza transmission risk in households: Insights from primary schools in Matsumoto city, 2014/15

Author

Listed:
  • Akira Endo
  • Mitsuo Uchida
  • Adam J Kucharski
  • Sebastian Funk

Abstract

Households are important settings for the transmission of seasonal influenza. Previous studies found that the per-person risk of within-household transmission decreases with household size. However, more detailed heterogeneities driven by household composition and contact patterns have not been studied. We employed a mathematical model that accounts for infections both from outside and within the household. The model was applied to citywide primary school seasonal influenza surveillance and household surveys from 10,486 students during the 2014/15 season in Matsumoto city, Japan. We compared a range of models to estimate the structure of household transmission and found that familial relationship and household composition strongly influenced the transmission patterns of seasonal influenza in households. Children had a substantially high risk of infection from outside the household (up to 20%) compared with adults (1–3%). Intense transmission was observed within-generation (between children/parents/grandparents) and also between mother and child, with transmission risks typically ranging from 5–20% depending on the transmission route and household composition. Children were identified as the largest source of secondary transmission, with family structure influencing infection risk.Author summary: We characterised detailed heterogeneity in household transmission patterns of influenza by applying a mathematical model to citywide primary school influenza survey data from 10,486 students in Matsumoto city, Japan, one of the largest-scale household surveys on seasonal influenza. Children were identified as the largest source of secondary transmission, with family structure influencing infection risk. This suggests that vaccinating children would have stronger secondary effects on transmission than would be assumed without taking into account transmission patterns within the household.

Suggested Citation

  • Akira Endo & Mitsuo Uchida & Adam J Kucharski & Sebastian Funk, 2019. "Fine-scale family structure shapes influenza transmission risk in households: Insights from primary schools in Matsumoto city, 2014/15," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-18, December.
  • Handle: RePEc:plo:pcbi00:1007589
    DOI: 10.1371/journal.pcbi.1007589
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007589
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007589&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip D. O'Neill & David J. Balding & Niels G. Becker & Mervi Eerola & Denis Mollison, 2000. "Analyses of infectious disease data from household outbreaks by Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 517-542.
    2. Chi Zhang, 2017. "Population in China," Europe-Asia Studies, Taylor & Francis Journals, vol. 69(8), pages 1333-1334, September.
    3. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    4. N. G. Becker & T. Britton, 1999. "Statistical studies of infectious disease incidence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 287-307, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dao Nguyen Vinh & Nguyen Thi Duy Nhat & Erwin Bruin & Nguyen Ha Thao Vy & Tran Thi Nhu Thao & Huynh Thi Phuong & Pham Hong Anh & Stacy Todd & Tran Minh Quan & Nguyen Thi Le Thanh & Nguyen Thi Nam Lien, 2021. "Age-seroprevalence curves for the multi-strain structure of influenza A virus," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    2. Ambra Poggi & Xavier Ramos, 2007. "Empirical Modeling of Deprivation Contagion Among Social Exclusion Dimensions (Using MCMC Methods)," LABORatorio R. Revelli Working Papers Series 59, LABORatorio R. Revelli, Centre for Employment Studies.
    3. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    4. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    5. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    6. Jia Zhang & Xiaoshu Chen & Shiwei Huang & Yi Wang & Wei Lin & Rui Zhou & He Zou, 2018. "Two-minute walk test: Reference equations for healthy adults in China," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-10, August.
    7. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    8. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    9. Yishu, Li, 2019. "A photovoltaic ecosystem: improving atmospheric environment and fighting regional poverty," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 69-79.
    10. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    11. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Luyao Wang & Hong Fan & Yankun Wang, 2018. "Estimation of consumption potentiality using VIIRS night-time light data," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    13. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    14. Phillip Stroud & Sara Del Valle & Stephen Sydoriak & Jane Riese & Susan Mniszewski, 2007. "Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-9.
    15. Caixia Wang & Huijie Li, 2022. "Public Compliance Matters in Evidence-Based Public Health Policy: Evidence from Evaluating Social Distancing in the First Wave of COVID-19," IJERPH, MDPI, vol. 19(7), pages 1-13, March.
    16. Bin Du & Ying Wang & Jiaxin He & Wai Li & Xiaohong Chen, 2021. "Spatio-Temporal Characteristics and Obstacle Factors of the Urban-Rural Integration of China’s Shrinking Cities in the Context of Sustainable Development," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. Dianxi Wang & Yufeng Zhao, 2021. "A potential new pattern of pathway to adulthood is emerging in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(42), pages 1023-1056.
    18. Krista Ruffini & Aaron Sojourner & Abigail Wozniak, 2021. "Who'S In And Who'S Out Under Workplace Covid Symptom Screening?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(2), pages 614-641, March.
    19. JIANG, Qijun & FLORKOWSKI, Wojciech Jan, 2021. "Factors Limiting Quality Assurance Program Implementation In Food Manufacturing Companies In Shanghai, China," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 24(01), March.
    20. Jinjing Wu & Shelby Deaton & Boshen Jiao & Zohn Rosen & Peter A Muennig, 2018. "The cost-effectiveness analysis of the New Rural Cooperative Medical Scheme in China," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.