IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v204y2007i3p420-426.html
   My bibliography  Save this article

The outbreak pattern of SARS cases in China as revealed by a mathematical model

Author

Listed:
  • Zhang, Zhibin

Abstract

Since it first appeared in China's Guangdong Province, Severe Acute Respiratory Syndrome (SARS) has caused serious damages to many parts of the world, especially Asia. Little is known about its epidemiology. We developed a modified discrete SIR model including susceptible individuals, non-hospitalized SARS persons; hospitalized patients, cured hospital patients, and those who have died due to SARS infection. Here, we demonstrate the effective reproduction number is determined by infection rates and infectious period of hospitalized and non-hospitalized SARS patients. Both infection rate and the effective reproductive number of the SARS virus are significantly negatively correlated with the total number of cumulative cases, indicating that the control measures implemented in China are effective, and the outbreak pattern of accumulative SARS cases in China is a logistic growth curve. We estimate the basic reproduction number R0 of SARS virus is 2.87 in mainland of China, very close to the estimations in Singapore and Hong Kong.

Suggested Citation

  • Zhang, Zhibin, 2007. "The outbreak pattern of SARS cases in China as revealed by a mathematical model," Ecological Modelling, Elsevier, vol. 204(3), pages 420-426.
  • Handle: RePEc:eee:ecomod:v:204:y:2007:i:3:p:420-426
    DOI: 10.1016/j.ecolmodel.2007.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000700049X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Méndez, Vicenç & Fort, Joaquim, 2000. "Dynamical evolution of discrete epidemic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 309-317.
    2. N. G. Becker & T. Britton, 1999. "Statistical studies of infectious disease incidence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 287-307, April.
    3. Moghadas, S.M. & Gumel, A.B., 2002. "Global stability of a two-stage epidemic model with generalized non-linear incidence," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(1), pages 107-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > SARS

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    2. Mattia Mazzoli & Riccardo Gallotti & Filippo Privitera & Pere Colet & José J. Ramasco, 2023. "Spatial immunization to abate disease spreading in transportation hubs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Xu Zhao & Hengxing Xiang & Feifei Zhao, 2023. "Measurement and Spatial Differentiation of Farmers’ Livelihood Resilience Under the COVID-19 Epidemic Outbreak in Rural China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 166(2), pages 239-267, April.
    4. Schimit, P.H.T. & Monteiro, L.H.A., 2009. "On the basic reproduction number and the topological properties of the contact network: An epidemiological study in mainly locally connected cellular automata," Ecological Modelling, Elsevier, vol. 220(7), pages 1034-1042.
    5. Ronald N. Kostoff & Stephen A. Morse, 2011. "Structure and infrastructure of infectious agent research literature: SARS," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 195-209, January.
    6. Chen Renbao & Wang Ping, 2008. "Modeling the Cumulative Cases from SARS," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    2. Iqbal, Zafar & Ahmed, Nauman & Baleanu, Dumitru & Adel, Waleed & Rafiq, Muhammad & Aziz-ur Rehman, Muhammad & Alshomrani, Ali Saleh, 2020. "Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Rao, Yerra Shankar & Keshri, Ajit Kumar & Mishra, Bimal Kumar & Panda, Tarini Charana, 2020. "Distributed denial of service attack on targeted resources in a computer network for critical infrastructure: A differential e-epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Artalejo, J.R. & Lopez-Herrero, M.J., 2011. "The SIS and SIR stochastic epidemic models: A maximum entropy approach," Theoretical Population Biology, Elsevier, vol. 80(4), pages 256-264.
    5. Sifat Sharmin & Md. Israt Rayhan, 2012. "Spatio-temporal modeling of infectious disease dynamics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 875-882, September.
    6. Apiwat Budwong & Sansanee Auephanwiriyakul & Nipon Theera-Umpon, 2021. "Infectious Disease Relational Data Analysis Using String Grammar Non-Euclidean Relational Fuzzy C-Means," IJERPH, MDPI, vol. 18(15), pages 1-18, August.
    7. David Lunn & Robert J B Goudie & Chen Wei & Oliver Kaltz & Olivier Restif, 2013. "Modelling the Dynamics of an Experimental Host-Pathogen Microcosm within a Hierarchical Bayesian Framework," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
    8. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    9. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    10. Shamsi G., N. & Ali Torabi, S. & Shakouri G., H., 2018. "An option contract for vaccine procurement using the SIR epidemic model," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1122-1140.
    11. Gupta, Aparna & Li, Zhisheng, 2011. "Calibration of a stochastic health evolution model using NHIS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3524-3540.
    12. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    13. Karen M Ong & Michael S Phillips & Charles S Peskin, 2020. "A mathematical model and inference method for bacterial colonization in hospital units applied to active surveillance data for carbapenem-resistant enterobacteriaceae," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-32, November.
    14. Joe Meagher & Nial Friel, 2022. "Assessing epidemic curves for evidence of superspreading," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2179-2202, October.
    15. Qingxia Zhang & Dingcheng Wang, 2015. "Assessing the Role of Voluntary Self-Isolation in the Control of Pandemic Influenza Using a Household Epidemic Model," IJERPH, MDPI, vol. 12(8), pages 1-18, August.
    16. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    17. Ángel Berihuete & Marta Sánchez-Sánchez & Alfonso Suárez-Llorens, 2021. "A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    18. Akira Endo & Mitsuo Uchida & Adam J Kucharski & Sebastian Funk, 2019. "Fine-scale family structure shapes influenza transmission risk in households: Insights from primary schools in Matsumoto city, 2014/15," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:204:y:2007:i:3:p:420-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.