IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v54y2005i3p575-594.html
   My bibliography  Save this article

Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods

Author

Listed:
  • Alexander Morton
  • Bärbel F. Finkenstädt

Abstract

Summary. A stochastic discrete time version of the susceptible–infected–recovered model for infectious diseases is developed. Disease is transmitted within and between communities when infected and susceptible individuals interact. Markov chain Monte Carlo methods are used to make inference about these unobserved populations and the unknown parameters of interest. The algorithm is designed specifically for modelling time series of reported measles cases although it can be adapted for other infectious diseases with permanent immunity. The application to observed measles incidence series motivates extensions to incorporate age structure as well as spatial epidemic coupling between communities.

Suggested Citation

  • Alexander Morton & Bärbel F. Finkenstädt, 2005. "Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 575-594, June.
  • Handle: RePEc:bla:jorssc:v:54:y:2005:i:3:p:575-594
    DOI: 10.1111/j.1467-9876.2005.05366.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2005.05366.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2005.05366.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    2. Andrew B Lawson & Joanne Kim, 2021. "Space-time covid-19 Bayesian SIR modeling in South Carolina," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    3. Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2008. "Model‐based measurement of latent risk in time series with applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 265-277, January.
    4. Sifat Sharmin & Md. Israt Rayhan, 2012. "Spatio-temporal modeling of infectious disease dynamics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 875-882, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:54:y:2005:i:3:p:575-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.