IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i1p129-149.html
   My bibliography  Save this article

Clustering time-course microarray data using functional Bayesian infinite mixture model

Author

Listed:
  • Claudia Angelini
  • Daniela De Canditiis
  • Marianna Pensky

Abstract

This paper presents a new Bayesian, infinite mixture model based, clustering approach, specifically designed for time-course microarray data. The problem is to group together genes which have “similar” expression profiles, given the set of noisy measurements of their expression levels over a specific time interval. In order to capture temporal variations of each curve, a non-parametric regression approach is used. Each expression profile is expanded over a set of basis functions and the sets of coefficients of each curve are subsequently modeled through a Bayesian infinite mixture of Gaussian distributions. Therefore, the task of finding clusters of genes with similar expression profiles is then reduced to the problem of grouping together genes whose coefficients are sampled from the same distribution in the mixture. Dirichlet processes prior is naturally employed in such kinds of models, since it allows one to deal automatically with the uncertainty about the number of clusters. The posterior inference is carried out by a split and merge MCMC sampling scheme which integrates out parameters of the component distributions and updates only the latent vector of the cluster membership. The final configuration is obtained via the maximum a posteriori estimator. The performance of the method is studied using synthetic and real microarray data and is compared with the performances of competitive techniques.

Suggested Citation

  • Claudia Angelini & Daniela De Canditiis & Marianna Pensky, 2012. "Clustering time-course microarray data using functional Bayesian infinite mixture model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 129-149, March.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:129-149
    DOI: 10.1080/02664763.2011.578620
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.578620
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.578620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelini, Claudia & De Canditiis, Daniela & Pensky, Marianna, 2009. "Bayesian models for two-sample time-course microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1547-1565, March.
    2. Shubhankar Ray & Bani Mallick, 2006. "Functional clustering by Bayesian wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 305-332, April.
    3. Sinae Kim & Mahlet G. Tadesse & Marina Vannucci, 2006. "Variable selection in clustering via Dirichlet process mixture models," Biometrika, Biometrika Trust, vol. 93(4), pages 877-893, December.
    4. Tadesse, Mahlet G. & Sha, Naijun & Vannucci, Marina, 2005. "Bayesian Variable Selection in Clustering High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 602-617, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Sounak, 2009. "Bayesian binary kernel probit model for microarray based cancer classification and gene selection," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4198-4209, October.
    2. Benhuai Xie & Wei Pan & Xiaotong Shen, 2008. "Variable Selection in Penalized Model‐Based Clustering Via Regularization on Grouped Parameters," Biometrics, The International Biometric Society, vol. 64(3), pages 921-930, September.
    3. Crook Oliver M. & Gatto Laurent & Kirk Paul D. W., 2019. "Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-20, December.
    4. Thierry Chekouo & Alejandro Murua, 2018. "High-dimensional variable selection with the plaid mixture model for clustering," Computational Statistics, Springer, vol. 33(3), pages 1475-1496, September.
    5. Brian J. Reich & Howard D. Bondell, 2011. "A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data," Biometrics, The International Biometric Society, vol. 67(2), pages 381-390, June.
    6. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    7. Krzanowski, Wojtek J. & Hand, David J., 2009. "A simple method for screening variables before clustering microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2747-2753, May.
    8. Lian, Heng, 2010. "Sparse Bayesian hierarchical modeling of high-dimensional clustering problems," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1728-1737, August.
    9. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    10. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    11. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    12. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    13. Germán Caruso & Walter Sosa-Escudero & Marcela Svarc, 2015. "Deprivation and the Dimensionality of Welfare: A Variable-Selection Cluster-Analysis Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(4), pages 702-722, December.
    14. Lee, Kuo-Jung & Chen, Ray-Bing & Wu, Ying Nian, 2016. "Bayesian variable selection for finite mixture model of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 1-16.
    15. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    16. repec:jss:jstsof:47:i05 is not listed on IDEAS
    17. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    18. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    19. Dongik Jang & Hee-Seok Oh & Philippe Naveau, 2017. "Identifying local smoothness for spatially inhomogeneous functions," Computational Statistics, Springer, vol. 32(3), pages 1115-1138, September.
    20. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    21. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:129-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.