IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i3d10.1007_s00180-018-0818-7.html
   My bibliography  Save this article

High-dimensional variable selection with the plaid mixture model for clustering

Author

Listed:
  • Thierry Chekouo

    (University of Minnesota Duluth)

  • Alejandro Murua

    (Université de Montréal)

Abstract

With high-dimensional data, the number of covariates is considerably larger than the sample size. We propose a sound method for analyzing these data. It performs simultaneously clustering and variable selection. The method is inspired by the plaid model. It may be seen as a multiplicative mixture model that allows for overlapping clustering. Unlike conventional clustering, within this model an observation may be explained by several clusters. This characteristic makes it specially suitable for gene expression data. Parameter estimation is performed with the Monte Carlo expectation maximization algorithm and importance sampling. Using extensive simulations and comparisons with competing methods, we show the advantages of our methodology, in terms of both variable selection and clustering. An application of our approach to the gene expression data of kidney renal cell carcinoma taken from The Cancer Genome Atlas validates some previously identified cancer biomarkers.

Suggested Citation

  • Thierry Chekouo & Alejandro Murua, 2018. "High-dimensional variable selection with the plaid mixture model for clustering," Computational Statistics, Springer, vol. 33(3), pages 1475-1496, September.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-018-0818-7
    DOI: 10.1007/s00180-018-0818-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0818-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0818-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Benhuai Xie & Wei Pan & Xiaotong Shen, 2008. "Variable Selection in Penalized Model‐Based Clustering Via Regularization on Grouped Parameters," Biometrics, The International Biometric Society, vol. 64(3), pages 921-930, September.
    3. Sinae Kim & Mahlet G. Tadesse & Marina Vannucci, 2006. "Variable selection in clustering via Dirichlet process mixture models," Biometrika, Biometrika Trust, vol. 93(4), pages 877-893, December.
    4. Sijian Wang & Ji Zhu, 2008. "Variable Selection for Model-Based High-Dimensional Clustering and Its Application to Microarray Data," Biometrics, The International Biometric Society, vol. 64(2), pages 440-448, June.
    5. Tadesse, Mahlet G. & Sha, Naijun & Vannucci, Marina, 2005. "Bayesian Variable Selection in Clustering High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 602-617, June.
    6. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    7. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    8. Thierry Chekouo & Alejandro Murua, 2015. "The penalized biclustering model and related algorithms," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1255-1277, June.
    9. Li, Fan & Zhang, Nancy R., 2010. "Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1202-1214.
    10. Witten, Daniela M. & Tibshirani, Robert, 2010. "A Framework for Feature Selection in Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 713-726.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weibing Li & Thierry Chekouo, 2022. "Bayesian group selection with non-local priors," Computational Statistics, Springer, vol. 37(1), pages 287-302, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crook Oliver M. & Gatto Laurent & Kirk Paul D. W., 2019. "Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-20, December.
    2. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    3. Brian J. Reich & Howard D. Bondell, 2011. "A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data," Biometrics, The International Biometric Society, vol. 67(2), pages 381-390, June.
    4. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    5. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    6. Baolin Wu, 2013. "Sparse cluster analysis of large-scale discrete variables with application to single nucleotide polymorphism data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 358-367, February.
    7. Rendon Aguirre, Janeth Carolina, 2017. "Clustering Big Data by Extreme Kurtosis Projections," DES - Working Papers. Statistics and Econometrics. WS 24522, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
    9. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    10. Krzanowski, Wojtek J. & Hand, David J., 2009. "A simple method for screening variables before clustering microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2747-2753, May.
    11. Gilles Celeux & Cathy Maugis-Rabusseau & Mohammed Sedki, 2019. "Variable selection in model-based clustering and discriminant analysis with a regularization approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 259-278, March.
    12. Benhuai Xie & Wei Pan & Xiaotong Shen, 2008. "Variable Selection in Penalized Model‐Based Clustering Via Regularization on Grouped Parameters," Biometrics, The International Biometric Society, vol. 64(3), pages 921-930, September.
    13. Arias-Castro, Ery & Pu, Xiao, 2017. "A simple approach to sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 217-228.
    14. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    15. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    16. Pedro Galeano & Daniel Peña, 2019. "Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 289-329, June.
    17. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    18. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    19. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    20. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-018-0818-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.