IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i5p1547-1565.html
   My bibliography  Save this article

Bayesian models for two-sample time-course microarray experiments

Author

Listed:
  • Angelini, Claudia
  • De Canditiis, Daniela
  • Pensky, Marianna

Abstract

A truly functional Bayesian method for detecting temporally differentially expressed genes between two experimental conditions is presented. The method distinguishes between two biologically different set ups, one in which the two samples are interchangeable, and one in which the second sample is a modification of the first, i.e.the two samples are non-interchangeable. This distinction leads to two different Bayesian models, which allow more flexibility in modeling gene expression profiles. The method allows one to identify differentially expressed genes, to rank them and to estimate their expression profiles. The proposed procedure successfully deals with various technical difficulties which arise in microarray time-course experiments, such as small number of observations, non-uniform sampling intervals and presence of missing data or repeated measurements. The procedure allows one to account for various types of error, thus offering a good compromise between nonparametric and normality assumption based techniques. In addition, all evaluations are carried out using analytic expressions, hence the entire procedure requires very little computational effort. The performance of the procedure is studied using simulated and real data.

Suggested Citation

  • Angelini, Claudia & De Canditiis, Daniela & Pensky, Marianna, 2009. "Bayesian models for two-sample time-course microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1547-1565, March.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1547-1565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00349-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelini Claudia & De Canditiis Daniela & Mutarelli Margherita & Pensky Marianna, 2007. "A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-33, September.
    2. Laure Ambroise & Jean-Marc Ferrandi & Dwight Merunka & Pierre Valette-Florence, 2004. "How well does brand personality predict brand choice ?," Post-Print halshs-00525048, HAL.
    3. Heard, Nicholas A. & Holmes, Christopher C. & Stephens, David A., 2006. "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 18-29, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Angelini & Daniela De Canditiis & Marianna Pensky, 2012. "Clustering time-course microarray data using functional Bayesian infinite mixture model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 129-149, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:47:i05 is not listed on IDEAS
    2. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    3. Aßmann, Christian & Boysen-Hogrefe, Jens, 2009. "A bayesian approach to model-based clustering for panel probit models," Economics Working Papers 2009-03, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Vinciotti Veronica & Yu Keming, 2009. "M-quantile Regression Analysis of Temporal Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, September.
    5. Robert Darkins & Emma J Cooke & Zoubin Ghahramani & Paul D W Kirk & David L Wild & Richard S Savage, 2013. "Accelerating Bayesian Hierarchical Clustering of Time Series Data with a Randomised Algorithm," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    6. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    7. Gniewko Niedbała & Jarosław Kurek & Bartosz Świderski & Tomasz Wojciechowski & Izabella Antoniuk & Krzysztof Bobran, 2022. "Prediction of Blueberry ( Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods," Agriculture, MDPI, vol. 12(12), pages 1-27, December.
    8. Burghardt, Elliot & Sewell, Daniel & Cavanaugh, Joseph, 2022. "Agglomerative and divisive hierarchical Bayesian clustering," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    9. Marot, Guillemette & Foulley, Jean-Louis & Jaffrzic, Florence, 2009. "A structural mixed model to shrink covariance matrices for time-course differential gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1630-1638, March.
    10. Sylvia Frühwirth-Schnatter, 2011. "Panel data analysis: a survey on model-based clustering of time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 251-280, December.
    11. James G. Booth & George Casella & James P. Hobert, 2008. "Clustering using objective functions and stochastic search," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 119-139, February.
    12. Jijo George & Victor Anandkumar, 2018. "Dimensions of Product Brand Personality," Vision, , vol. 22(4), pages 377-386, December.
    13. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    14. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    15. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    16. Jim Q. Smith & Paul E. Anderson & Silvia Liverani, 2008. "Separation measures and the geometry of Bayes factor selection for classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 957-980, November.
    17. Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
    18. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    19. Shotwell, Matthew S., 2013. "profdpm: An R Package for MAP Estimation in a Class of Conjugate Product Partition Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i08).
    20. Freeman, G. & Smith, J.Q., 2011. "Bayesian MAP model selection of chain event graphs," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1152-1165, August.
    21. Alessandra Guglielmi & Francesca Ieva & Anna M. Paganoni & Fabrizio Ruggeri & Jacopo Soriano, 2014. "Semiparametric Bayesian models for clustering and classification in the presence of unbalanced in-hospital survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 25-46, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1547-1565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.