IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v16y2017i4p243-257n1.html
   My bibliography  Save this article

Bayesian comparison of protein structures using partial Procrustes distance

Author

Listed:
  • Ejlali Nasim

    (Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, G. C. Evin, 1983963113, Tehran, Iran)

  • Faghihi Mohammad Reza

    (Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, G. C. Evin, 1983963113, Tehran, Iran)

  • Sadeghi Mehdi

    (National Institute of Genetic Engineering and Biotechnology (NIGEB), Pajoohesh Blvd, 17 Km Tehran-Karaj Highway, P. O. Box 14965/161, Tehran, Iran)

Abstract

An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.

Suggested Citation

  • Ejlali Nasim & Faghihi Mohammad Reza & Sadeghi Mehdi, 2017. "Bayesian comparison of protein structures using partial Procrustes distance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(4), pages 243-257, September.
  • Handle: RePEc:bpj:sagmbi:v:16:y:2017:i:4:p:243-257:n:1
    DOI: 10.1515/sagmb-2016-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2016-0014
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2016-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S.M. Najibi & M.R. Faghihi & M. Golalizadeh & S.S. Arab, 2015. "Bayesian alignment of proteins via Delaunay tetrahedralization," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1064-1079, May.
    2. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.
    3. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    4. Peter J. Green & Kanti V. Mardia, 2006. "Bayesian alignment using hierarchical models, with applications in protein bioinformatics," Biometrika, Biometrika Trust, vol. 93(2), pages 235-254, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, J. & Srivastava, A. & Huffer, F.W., 2013. "Detection, classification and estimation of individual shapes in 2D and 3D point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 227-241.
    2. Kanti V. Mardia & Vysaul B. Nyirongo & Christopher J. Fallaize & Stuart Barber & Richard M. Jackson, 2011. "Hierarchical Bayesian Modeling of Pharmacophores in Bioinformatics," Biometrics, The International Biometric Society, vol. 67(2), pages 611-619, June.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    5. Atahan Afsar; José Elías Gallegos; Richard Jaimes; Edgar Silgado Gómez & José Elías Gallegos & Richard Jaimes & Edgar Silgado Gómez, 2020. "Reconciling Empirics and Theory: The Behavioral Hybrid New Keynesian Model," Vniversitas Económica 18560, Universidad Javeriana - Bogotá.
    6. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    7. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    8. Di Noia, Antonio & Mastrantonio, Gianluca & Jona Lasinio, Giovanna, 2024. "Bayesian size-and-shape regression modelling," Statistics & Probability Letters, Elsevier, vol. 204(C).
    9. Michael T. Owyang, 2002. "Modeling Volcker as a non-absorbing state: agnostic identification of a Markov-switching VAR," Working Papers 2002-018, Federal Reserve Bank of St. Louis.
    10. Feng Dai & Baumgartner Richard & Svetnik Vladimir, 2018. "A Bayesian Framework for Estimating the Concordance Correlation Coefficient Using Skew-elliptical Distributions," The International Journal of Biostatistics, De Gruyter, vol. 14(1), pages 1-8, May.
    11. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
    12. He, Yongda & Lin, Boqiang, 2018. "Time-varying effects of cyclical fluctuations in China's energy industry on the macro economy and carbon emissions," Energy, Elsevier, vol. 155(C), pages 1102-1112.
    13. Brand, Claus & Goy, Gavin W & Lemke, Wolfgang, 2020. "Natural rate chimera and bond pricing reality," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224546, Verein für Socialpolitik / German Economic Association.
    14. González-Astudillo, Manuel, 2019. "An output gap measure for the euro area: Exploiting country-level and cross-sectional data heterogeneity," European Economic Review, Elsevier, vol. 120(C).
    15. Boeck, Maximilian & Feldkircher, Martin, 2021. "The Impact of Monetary Policy on Yield Curve Expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 887-901.
    16. Tsionas, Efthymios G., 1998. "Monte Carlo inference in econometric models with symmetric stable disturbances," Journal of Econometrics, Elsevier, vol. 88(2), pages 365-401, November.
    17. Owyang, Michael T. & Ramey, Garey, 2004. "Regime switching and monetary policy measurement," Journal of Monetary Economics, Elsevier, vol. 51(8), pages 1577-1597, November.
    18. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    19. Eiji Goto, 2020. "Industry Impacts of Unconventional Monetary Policy," 2020 Papers pgo873, Job Market Papers.
    20. Afsar, Atahan & Gallegos, José-Elías & Jaimes, Richard & Silgado-Gómez, Edgar, 2024. "A behavioral hybrid New Keynesian model: Quantifying the importance of belief formation frictions," Economic Modelling, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:16:y:2017:i:4:p:243-257:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.