IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v100y2005p1133-1144.html
   My bibliography  Save this article

A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities

Author

Listed:
  • Xu, Ke
  • Wikle, Christopher K.
  • Fox, Neil I.

Abstract

No abstract is available for this item.

Suggested Citation

  • Xu, Ke & Wikle, Christopher K. & Fox, Neil I., 2005. "A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1133-1144, December.
  • Handle: RePEc:bes:jnlasa:v:100:y:2005:p:1133-1144
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2005/00000100/00000472/art00004
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Richardson, Robert & Kottas, Athanasios & Sansó, Bruno, 2017. "Flexible integro-difference equation modeling for spatio-temporal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 182-198.
    3. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    4. Robert Richardson & Athanasios Kottas & Bruno Sansó, 2020. "Spatiotemporal modelling using integro‐difference equations with bivariate stable kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1371-1392, December.
    5. Athanasios Kottas, 2018. "Discussion of paper “nonparametric Bayesian inference in applications” by Peter Müller, Fernando A. Quintana and Garritt L. Page," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 219-225, June.
    6. Athanasios Micheas & Yuqiang Peng, 2010. "Bayesian Procrustes analysis with applications to hydrology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 41-55.
    7. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:100:y:2005:p:1133-1144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.